
Chapter 40 

Comparing the dynamics of stomatal networks to 

the problem-solving dynamics of cellular computers 

Jevin D. West1 David Peak2 Keith Mott3 

Susanna Messinger4 

1 Department of Biology, University of Washington, Seattle, WA (formerly in De

partment of Biology, Utah State University, Logan, UT) 

2Department of Physics, Utah State University, Logan, UT 

3Department of Biology, Utah State University, Logan, UT 

4Department of Ecology and Evolutionary Biology, University of Michigan, Ann 

Arbor, MI (formerly in Department of Biology, Utah State University, Logan, UT) 

Correspondence: Jevin D. West, email: jevinw@u.washington.edu 

This paper was presented at the International Conference on Complex Systems 

(ICCS2004), May 16, 2004. 

Keywords: Stomata, Networks, Distributed Computation, Complex Systems, Stom

atal Networks 

 Unifying Themes in Complex Systems
© Springer-Verlag Berlin Heidelberg 2011
A. A. Minai et al. (eds.),



328 

1 Introduction 

Is the adaptive response to environmental stimuli of a biological system lack

ing a central nervous system a result of a formal computation? If so, these 

biological systems must conform to a different set of computational rules 

than those associated with central processing. To explore this idea, we ex

amined the dynamics of stomatal patchiness in leaves. Stomata~tiny pores 

on the surface of a leaf~are biological processing units that a plant uses to 

solve an optimization problem~maximize CO2 assimilation and minimize 

H20 loss. Under some conditions, groups of stomata coordinate in both 

space and time producing motile patches that can be visualized with chloro

phyll fluorescence. These patches suggest that stomata are nonautonomous 

and that they form a network presumably engaged in the optimization task. 

In this study, we show that stomatal dynamics are statistically and qualita

tively comparable to the emergent, collective, problem-solving dynamics of 

cellular computing systems. 

2 Stomatal Networks 

Stomata are pores on the surfaces of leaves that permit the exchange of 

gases between the inside of the leaf and the atmosphere. In most plants, 

stomata are between 30 and 60 Mm long and occur at densities between 50 

and 200 per mm2• Figure 1 shows an image of a typical stomatal network. 

A stoma (singular) consists of two guard cells that change their shape, as a 

result of changes in internal water content via osmosis, thereby creating a 

pore of variable aperture. Gases diffuse through the open stomatal pores. 

For example, CO2 enters the leaf, permitting photosynthesis to occur. At 
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Figure 1: Stomatal Network. The image (taken with a confocal microscope) 

shows stomata (the bean-shaped structures) separated by epidermal cells on 

the surface of a Vicia faba leaf. In this figure, the stomatal pore apertures 

are about 2 /-tm wide. 

the same time, water vapor escapes. Excess water loss can have serious 

detrimental consequences for a plant, so plants are faced with a problem: 

under a given set of environmental conditions, how open or closed should the 

stomatal pores be? Plants solve this problem on a daily basis by solving what 

has been formalized mathematically as a constrained optimization problem 

[5]. 

Traditionally, the constrained optimization model of plant biology treats 
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stomata as autonomous units that respond independently to such environ

mental stimuli as light, CO2 , humidity, and H 20 stress. In the traditional 

formulation, the model predicts that, as long as environmental changes are 

sufficiently slow, stomatal conductance, 9 (determined primarily by aper

ture), varies as environmental conditions change such that BA/BC ex BE/Bg 

(where A is the rate of CO2 uptake and E is the rate of water loss). It 

also predicts that the spatial distribution of 9 should be essentially uniform 

when environmental conditions are spatially uniform, varying only because 

of small structural differences in stomata. It has been shown, however, that 

groups of tens to thousands of stomata can behave drastically differently 

from stomata in adjacent areas even when environmental conditions are the 

same everywhere [20, 3, 13, 14]. 

This spatially heterogeneous behavior is called stomatal patchiness. Stom

atal patchiness can be dynamic, with complicated and apparently unpre

dictable spatial and temporal variations appearing over the leaf surface. Fig

ure 2 shows an example of stomatal patchiness with constant, spatially uni

form environmental conditions. The figure, taken in the near infrared, is of 

chlorophyll fluorescence. Under carefully controlled conditions, chlorophyll 

fluorescence can be interpreted in terms of stomatal conductance [8, 12,21]. 

Stomatal patchiness is inconsistent with the constrained optimization model. 

Nevertheless, it has been observed in over 200 species [3]. Experiments have 

demonstrated that stomata can interact locally via hydraulic forces medi

ated by the epidermal cells between the stomata. Such forces may provide a 

mechanism for producing and sustaining the coordinated, stomatal behavior 

observed in patchiness [10, 15, 17]. 

Stomatal patches are often initiated by changing external humidity. In 

experiments that we have conducted where an abrupt, spatially uniform 
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Figure 2: Patchy stomatal conductance. In this chlorophyll fluorescence 

image of a Cocklebur (Xanthium Strumarium) leaf, open stomata appear 

as dark areas and closed stomata appear as light areas (the veins do not 

contain stomata). The area show is 2.54 cm x 2.54 cm, and contains over 

100,000 stomata. 
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humidity decrease is applied to the leaf, we observe a variety of stomatal 

responses. In each case, the experimental region of the leaf starts in what 

appears to be a uniform steady state, with stomata approximately uniformly 

open. As a result of the applied humidity drop, stomata tend to close. How 

this closing is achieved, however, is remarkably variable. Often, all stomata 

tend to close more-or-less uniformly. In these cases, no patches are observed. 

Sometimes patches form for a brief period, then quickly disappear. In rare 

instances, patches persist for hours and display rich dynamics. Which of 

the behaviors occurs in anyone experiment is never predictable. The vari

ability we observe suggests that stomatal dynamics is exquisitely sensitive 

to microscopic conditions that we cannot directly control-a situation that 

is reminiscent of space-time systems with self-organizing dynamics [1]. We 

presume that, in our experiments our plants start with a roughly uniform 

gi, predicted by constrained optimization. After we lower the humidity, our 

plants presumably seek out a new, optimal gf. We are interested in how the 

transition from gi to gf occurs, and the role (if any) patches play in it. 

3 Cellular Computer Networks 

An artificial cellular computing system consists of individual units, cells, 

usually arranged in a regular one- or two-dimensional lattice. Each cell is 

connected to some subset of other cells in the system. The states of the cells 

are updated simultaneously according to a deterministic rule. Depending 

on the degree of connectivity and the treatment of time, space, and state, a 

cellular computer can be categorized as a neural network (NN), a coupled 

map lattice (CML), a cellular neural network (CNN), or a cellular automaton 

(CA) (see Table 1). 
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Table 1: Cellular Computer Networks. A categorization of different artificial 

cellular computer types based on their connectivity and treatment of space, 

time, and state. C=continuous; D=discrete; E=extensive; L=limited. 

Model Type Space Connectivity Time State 

Neural Network D E C C 

Coupled Map Lattice D E or L D C 

Cellular Neural Network D L C C 

Cellular Automaton D L D D 

Cellular computing systems can perform global computational tasks. De

pending on the degree of connectivity, the completion of that task can be 

non-trivial. For example, the performance of a global computation by an 

extensively connected network, where at any moment each cell has access to 

information from the entire system, is relatively simple. On the other hand, 

the same task performed by a strictly locally connected network, where at 

any moment each cell has access to a very limited amount of information 

from the entire system, is difficult. If the global behavior is not explicitly 

defined by the deterministic behavior of individual network units then the 

computation is said to be emergent [6]. It has been shown that, in some 

locally connected CA that perform emergent computation, the global task 

is accomplished by patches of information coherently propagating over large 

distances [7]. In these example systems (in which information is processed 

strictly locally), global computation is achieved because distant regions of 

the system can communicate via coherent patch propagation. 

An instructive example of this is the density classification task performed 

by a two-state CA [9, 7, 19]. In one version of this task, the CA starts 
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Figure 3: Density Classification by a 2D CA. The configuration at t=O for 

this 15 by 15 lattice is a random distribution of Is (white) and Os (black) 

with > 50% of Is. As time progresses the CA evolves to a steady state of 

all Is, indicating that Is were initially in the majority. 

with any initial distribution of 0 and 1 states. The density of this initial 

configuration is said to be classified if the CA eventually evolves to a state 

of all Is if the initial configuration had more Is than Os, and to all Os, 

otherwise. Figure 3 shows an example of a two-dimensional CA performing 

density classification. In this CA, each cell shares information with only a 

few of its nearest neighbors, yet the system as a whole manages to correctly 

assess that 1 was initially the majority state. No cell individually performs 

the density classification task in the CA shown: the global result emerges 

from the strictly local interaction of the component cells. Note that, shortly 

after the CA in Figure 3 begins to evolve, patches form and move coherently 

across the CA space. 

In general, the farther the initial density is from 0.5 the more quickly 

and more accurately a density classifier CA will perform the classification 

task. For densities close to 0.5, the task becomes more difficult, though 

some CAs still perform fairly well even under these circumstances. We have 

made an exhaustive study of the behavior of very good ID and 2D density 
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classifier CAs for initial densities near 0.5. In our study, we start each time 

with exactly the same macroscopic initial density but with different micro

scopic configurations. In the vast majority of instances, these good classifiers 

quickly achieve a correct steady state. Much less frequently, the CAs take an 

inordinately long time (if ever) to reach steady state. The difference between 

two initial configurations that lead to rapid and protracted transients can 

be as little as two cells. Which initial configurations produce long transients 

is never predictable. In other words, density classifier CAs exhibit sensitive 

dependence on the microscopic details of their initial configurations. 

4 A comparison of stomatal networks and cellular 

computer networks 

Our discussion of stomatal networks and cellular computers identifies a num

ber of suggestive similarities. Both are able to perform sophisticated global 

tasks even though distantly separated parts of the respective systems are 

not directly connected. Both show evidence of extreme sensitivity to micro

scopic system details. Both manifest dynamic patchiness, which, in the case 

of cellular computers, at least, is the mechanism by which global problem 

solving is accomplished. One wonders whether these similarities are merely 

accidental or if there are deeper, more quantitative connections between 

stomata and cellular computers [11 , 16] . 

To probe this question, we have closely examined some of the statistical 

properties of the dynamics of these two different kinds of networks. Be

cause stomata have continuous aperture states that change asynchronously 

and continuously in time, while CAs have discrete states that change syn

chronously in discrete time, statistical similarities in their dynamics are not 



336 

expected a priori. On the other hand, both stomata and CAs that com

pute appear to harbor the same kind of collective behavior that has been 

observed in simulations of self-organized critical systems [2]. Taking a cue 

from such simulations, we have calculated Fourier spectra, Hursts rescaled 

range (RjS) statistics, and event waiting distributions for both stomata and 

for several ID and 2D density classifier CAs. 

Data for stomatal networks were obtained from chlorophyll fluorescence 

images (512 x 512 pixels) from three different experiments during which ex

tended dynamical patchiness occurred. We examined (512 entry) intensity 

time series for each of 50,000 randomly chosen pixels in our data sets. From 

these we calculated Fourier spectra and a summed power spectrum. The 

same data were used to calculate the Hurst RjS statistic. We defined an 

event as an unusmilly large change in pixel intensity (for a more detailed de

scription see [18]) and calculated the distribution of time between successive 

events at each pixel. 

The same statistics were calculated for ID and 2D density classifier CAs. 

A good density classifier typically reaches steady state in a time that is too 

short to produce reasonable statistics. Thus, to protract the dynamics, we 

injected low amplitude white noise in the form of occasional random state 

flips. This perturbation introduces spurious high frequency variations in 

the dynamics, so care has to be taken to filter out its effects. Event waiting 

times were extracted from examples of unusually long, but unperturbed, 

transients. We defined an event in these studies as a change in patch type 

at a cell, specifically, as a time series of 1111 followed by a 0, or 0000 followed 

by a 1, or 1010 followed by a 0, or 0101 followed by a l. 

A summary of the statistical results is presented in Table 2. The spec

tral densities, 8(f), of the dynamics of all three network types (stomata, 
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Table 2: Statistical Summary. A summary of the statistical properties of 

stomatal networks and locally connected density classifying CAs that exhibit 

patches during the problem-solving process. PF is the exponent of the power 

law expression S(f) ex j-PF fit to the Fourier spectra. H is the exponent 

of the power law expression RI Sex dH where RI S is Hurst's rescaled range 

statistic and d is the time delay. Pw is the exponent of the expression 

Fw ex W-Pw where Fw is the frequency of the waiting-time and W is the 

waiting-time. ** insufficient data to calculate this statistic. 

System Pj R2 H R2 Pw R2 

Stomatal Network 1.94 ± 0.10 0.99 0.60 ± 0.03 0.94 1.15 ± 0.21 0.93 

1-D CA 1.98 ± 0.12 0.99 ** ** 1.77 ± 0.23 0.91 

2-D CA Case 1 1.99 ± 0.11 0.99 0.54 ± 0.02 0.99 2.22 ± 0.14 0.96 

2-D CA Case 2 2.16 ± 0.12 0.99 0.60 ± 0.05 0.96 1.96 ± 0.11 0.97 

2-D CA Case 3 1.91 ± 0.12 0.99 0.44 ± 0.05 0.96 2.73 ± 0.24 0.92 

2-D CA Case 4 1.84 ± 0.17 0.99 0.35 ± 0.08 0.96 2.35 ± 0.19 0.93 
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ID and 2D CAs) have extended regions that are well fit by a power law, 

S(J) ex: I-PF , with exponents PF rv 2. The Hurst exponent, H, of the 

power law expression RI S ex: dH (where d is the time delay) should be re

lated to the spectral density exponent by PF = 2H + 1. The calculated 

values of PF and H for the 2D CAs we examined and for our stomatal net

works fit this relationship well. The waiting time frequency distributions 

for the three network types are fit well by a power law, Fw ex: W- pw . In 

studies of self-organized dynamics, it is found that the value of PW depends 

sensitively on the specific details of the system [4]. It is therefore not sur

prising that Pw for stomatal networks and density classifying CAs might be 

different. What is surprising is that these distributions are all power laws. 

The results presented here are strong evidence that stomatal networks and 

cellular computers are dynamically close cousins. 

5 Conel usion 

Plants plausibly achieve an optimum stomatal aperture for a given set of en

vironmental conditions. When a plant is presented with a difficult problem 

(e.g., an abrupt change in humidity), groups of stomata can form collective 

dynamical patches, contrary to the constrained optimization model of plant 

biology. We argue that the qualitative and quantitative features of stomatal 

patches are essentially indistinguishable from those found in locally con

nected cellular computers that perform global computational tasks. This 

leads us to conjecture that the reason so many plant species exhibit stom

atal patchiness may be that, through their stomata, plants are performing 

a sophisticated kind of problem solving that is similar to emergent compu

tation. Unambiguous resolution of this conjecture awaits the development 
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of sharper tools than now exist for quantifying computation, especially as it 

exists in natural systems. 
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