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Viziometrics: Analyzing Visual Information in the
Scientific Literature
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Abstract—Scientific results are communicated visually in the literature through diagrams, visualizations, and photographs. These
information-dense objects have been largely ignored in bibliometrics and scientometrics studies when compared to citations and text.
In this paper, we use techniques from computer vision and machine learning to classify more than 8 million figures from PubMed into 5
figure types and study the resulting patterns of visual information as they relate to scholarly impact. We find that the distribution of
figures and figure types in the literature has remained relatively constant over time, but can vary widely across field and topic.
Remarkably, we find a significant correlation between scientific impact and the use of visual information, where higher impact papers
tend to include more diagrams, and to a lesser extent more plots. To explore these results and other ways of extracting this visual
information, we have built a visual browser to illustrate the concept and explore design alternatives for supporting viziometric analysis
and organizing visual information. We use these results to articulate a new research agenda – viziometrics – to study the organization
and presentation of visual information in the scientific literature.

Index Terms—Viziometrics, Scholarly Communication, Meta Research, Figure Retrieval, Information Retrieval, Bibliometrics,
Scientometrics,
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1 INTRODUCTION

INFORMATION in the scientific literature is conveyed visu-
ally using plots, photographs, illustrations, diagrams, and

tables. This information is designed for human consumption
but, unlike the surrounding text, is not directly machine-
readable. As a result, relatively few studies explore how
these visual encodings are used to convey scientific infor-
mation in different fields and how patterns of encodings
relate to impact.

The visual cortex is the highest-bandwidth information
channel into the human brain [1] and humans are known to
better retain information presented visually [2]. The figures
in the scientific literature therefore would appear to play a
critical role in scientific communication. The discovery of
the structure of DNA was largely a visual argument based
on the images produced by X-ray crystallography; indeed,
Gibbons argues that the act of producing the visualization
of the structure represents the discovery itself [3]. The first
extra-solar optical images of planets amplified the nascent
subfield of astronomy focused on planet-hunting [4]. Med-
ical imagery of biological processes at scales below that
which can be detected using conventional optical methods
are providing new insight into brain function [5]. In all
fields, key experimental results are summarized in plots,
complex scientific concepts are illustrated schematically in
diagrams, and photographic evidence are used to provide
insight at scales and in locations not available to the human
eye. The quantification of science and the rise of big data
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has increased the need for visual representations of the data,
models, and results.

In the 1950s, researchers like Eugene Garfield and De
Solla Price recognized the importance of citations in or-
ganizing and searching the scientific literature [6], [7], but
the process for making this information useful at scale
was painstaking. We see an analogy with the current role
of the visual literature. There is clear value in extracting
and analyzing figures to understand its role in scientific
communication and impact, just as there is clear value in
analyzing the citation network in isolation. The citation net-
work tells us how ideas are related; visual representations
tell us how ideas are communicated. Figures from related
groups, authors, and fields share a ‘DNA’ that can reveal
how information is conveyed.

We adopt the term viziometrics to describe this line of
research to convey the shared goals with bibliometrics and
scientometrics. As with bibliometrics, viziometrics uses ci-
tations to measure impact, but focuses on relating impact to
the patterns of figure use. We analyze theses patterns within
the papers (specifically, the distribution of various figure
types) in order to understand how they may be used to more
effectively communicate ideas. We have two overarching
goals, towards which this paper represents an initial step:
First, we seek to build new tools and services based on the
visual information in the literature to help researchers find
results more efficiently. For example, when searching for
uses of a particular method (e.g., phylogenetic analysis), the
figures themselves are more relevant than the papers that
contain them. Second, can the patterns of figure use inform
new best practices for scientific communication, especially
outside of the authors’ own discipline?

In this paper, we present an initial exploration of vizio-
metrics by analyzing a corpus of papers from PubMed Cen-
tral to relate the use and distribution of visual information
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with impact, and consider how these patterns change over
time and across fields in order to provide a foundation for
the two questions above. Specifically, we consider three sub-
questions:

• How do patterns of encoding visual information in
the literature vary across disciplines?

• How have patterns of encoding visual information in
the literature evolved over time?

• Is there any link between patterns of encoding visual
information and scientific impact?

To answer these questions, we developed a framework
and system for managing a viziometric analysis pipeline
and supporting tools based on the results. We refer to
the overall platform as VizioMetrics.org.1 VizioMetrics.org
includes components for ingesting a corpus of papers, a
database for managing the extracted metadata, analysis
routines for dismantling multi-chart images, a classifier for
identifying figure types, and a public figure-oriented search
and browse interface that illustrates a different approach to
organizing the scientific literature in terms of visual results
and concepts rather than the papers that contain them.

A key result is a link between the use of scientific dia-
grams (schematics, illustrations) and the impact of the pa-
per, suggesting that high-impact ideas tend to be conveyed
visually. We conjecture two possible explanations for this
link: that visual information improves clarity of the paper,
leading to more citations and higher impact, or that high-
impact papers naturally tend to include new, complex ideas
that require visual explanation. More broadly, we argue that
identification and description of the visual patterns, veri-
fied through computational experiments spanning a large
corpus of papers, can help improve understanding of how
scientific information is best conveyed, how the organiza-
tion of visual information relates to scientific impact, how
best to present scientific information more accessibly to a
broader audience, and perhaps most directly, how to build
better services for organizing, browsing, and searching the
“visual literature.”

2 RELATED WORK

Computer vision techniques have been used in the context
of conventional information retrieval tasks (retrieving pa-
pers based on keyword search), including some commercial
systems such as D8taplex [8] and Zanran [9]. Search results
from these proprietary systems have not been evaluated and
do not appear to make significant use of the semantics of the
images.

In 2001, Murphy et al. proposed a Structured Literature
Image Finder (SLIF) system, targeting microscope images
[10]. A decade later, Ahmed et al. [11], [12] improved
the model for mining captioned figures. The latest version
combines text-mining and image processing to extract struc-
tured information from biomedical literature. The algorithm
first extracts images and their captions from papers, then
classifies the images into six classes. Classification informa-
tion and other metadata can be accessed via web service.

1. We distinguish the platform VizioMetrics.org from the field of
study (Viziometrics)

However, SLIF focuses exclusively on microscropy images
and does not extend to general figures.

Choudhury et al. [13] proposed a modular architecture to
mine and analyze data-driven visualizations that included
(1) an extractor to separate figures, captions, and mentions
from PDF documents [14], (2) a search engine [15], (3)
raw-data extractor for line charts [16], [17], [18], [19], and
(4) a natural language processing module to understand
the semantics of the figure. Also, they presented an inte-
grated system from data extraction to search engine for user
experience. Chen et al. [20] proposed their search engine
named DiagramFlyer for data-driven figures. It recovers the
semantics of text components in the statistical graph. Users
can search figures by giving attributes of axes or the scale
range in further. Additionally, DiagramFlyer can expand
queries to include related figures in terms of their pro-
duction pipelines. Other studies have proposed informatics
methods for retrieving maps of the brain through large-scale
image and text mining on fMRI images [21].

Although these early projects represent a different ap-
proach for information retrieval tasks, they make no attempt
to analyze the patterns of visual information in the literature
longitudinally. Hegarty et al. collected 1,133 articles from
9 psychology journals and found that articles with fewer
graphs and more structural equation models were more
frequently cited [22]. This result was not supported by other
in different disciplines: Fawcett et al. studied the citations
of 28,068 papers published in the top three journals special-
izing in ecology and evolution and found that heavy use of
equations has a significant negative impact on citation rates
[23]. Tartanus et al. reported a positive correlation between
number of graphs and the impact factors in journal level
by analyzing all papers published in 2010 from 21 selected
journals in agriculture [24]. Other studies investigate how
the use of figures differs by authorship patterns. Cabanac
et al. analyzed 5,180 articles in the sciences and social
sciences and found that groups of authors used significantly
more tables and graphs than single authors [25]. Hartley
et al. investigated approximately 2,000 articles from 200
journals in the sciences and social sciences. They found
that men used 26% more figures than women, but found
no significant difference in their use of tables. In addition,
they didn’t find significant differences between men and
women in using either graphs and figures or tables in social
science articles [26]. Since counting figures manually is
extremely time-consuming, all of these studies were limited
to specific domains on a relatively small number of papers
and journals. Our approach is to automate the analysis using
computer vision techniques and machine learning, scale it
to a large corpus of papers to allow broader inferences, and
release the software and labeled data for other researchers
to use.

In this paper, we present this image processing pipeline
that classifies scientific figures into different categories (Sec-
tion: 3). We build a search interface that uses these classified
images as the primary unit for exploring scholarly content
(Section: 5). We make the dataset publicly available in order
to support additional analyses of the figures and improve
figure-oriented search. We provide preliminary evidence
that links paper impact to figure type density. (Section: 4).
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Fig. 1. VizioMetrics.org system overview. We store the images in Amazon’s S3 service. Image paths, figure captions, paper metadata and
classification result are stored in the database. The figure analysis system acquires the file keys from the database, downloads the image files, and
feeds them into the figure processing pipeline. The final classification results are stored in the database as the sources for the application prototype.

3 DATASET AND METHODOLOGY

We developed a platform called VizioMetrics.org with
which we analyzed 4.8 million figures from more than
650,000 PubMed Central (PMC) papers (7.4 figures/paper).
PubMed Central, an archive of biomedical and life science
literature, provides free access to the full text documents
including the source images. We downloaded the article files
from the PMC FTP server and extracted the images into a
figure corpus. Of these files, about 66% had associated figure
files. These figure files are separated from the PDF files,
allowing us to avoid having to extract them from literature.
In addition, PMC also provides paper metadata including
paper titles, authors, publishing date, citations, and image
captions that we use in our figure search engine and analysis
by field.

We found five image formats in use: GIF, JPEG, TIF, TIFF,
PNG. The vast majority (99%) of the images were in JPEG
format with a small number of PNG files. We had several
filtering steps to remove duplicate images and the images
that are not scientific figures (e.g. copies of full papers).
First, we removed all GIF files since they are duplicates of
images in other formats. Second, we removed image files
that turned out to be image representations of full papers.
Third, we converted all TIF and TIFF files to JPEG files and
resized their dimensions such that the longer edge was 1280
pixels. If the longest edge of the original image was larger
than this value, we did not modify the aspect ratios.

After filtering, we classified 4.8 million images into
five categories. The classification algorithm is described in
Section 3.1. The classifier returns a probability distribution
across all class types, but for each image we only assigned
the label with the highest probability. The class labels are as
follows:

• Equation (e.g., embedded equations, Greek and Latin
characters)

• Diagram (e.g., schematics, conceptual diagrams, flow
charts, architecture diagrams, illustrations)

TABLE 1
We classified 4,781,741 figures into six categories. The table shows

the number of figures for each figure type before and after dismantling.

Figure Type Count Before Dismantling Count After Dismantling

Multi-chart 1,416,237 (29.6%) None

Equation 1,425,042 (29.8%) 1,741,059 (17.0%)

Diagram 652,918 (13.7%) 2,036,704 (19.9%)

Photo 475,615 (9.9%) 2,322,231 (22.7%)

Plot 475,327 (9.9%) 3,579,839 (35.0%)

Table 336,602 (7.1%) 553,171 (5.4%)

Total 4,781,741 10,233,004

• Photo (e.g., microscopy images, diagnostic images,
radiology images, fluorescence imaging)

• Table (any tabular structures with text or numeric
data in the cells)

• Plot (e.g., bar charts, scatter plots, line charts)

Of the 4.8 million figures, 1.4 million contained multiple
sub-figures within a single image, often with each sub-figure
labeled with A, B, etc. We refer to these figures as multi-
chart figures. We “dismantled” these multi-chart figures into
their individual parts using a customized algorithm that
we developed for this purpose [27]. After dismantling, we
extracted and classified another 5 million individual figures.
In total, we classified more than 10 million figures.

The results of our classification are summarized in Table
1. This summary information alone provides some inter-
esting insights: About 67% of the total figures are embed-
ded in multi-chart figures, demonstrating the importance
of dismantling figures for this analysis. Plots are the most
likely figure type to be embedded in this way: we found
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Fig. 2. Comparison of classifiers: K-nearest neighbors, random forest, logistic regression, decision tree, and SVM with RBF, linear, and polynomial
kernels, respectively. (A) The SVM with RBF kernel achieves the best performance evaluated by 10-fold cross validation. (B) The SVM with the RBF
kernel also achieves the best performance compared to the linear kernel and polynomial kernel shown with the ROC curves.

475k standalone plots but 3.5M total plots after disman-
tling. Tables are significantly less common than other figure
types, suggesting a preference among authors (or possibly
editors) for presenting results visually. There is a relatively
uniform distribution across diagrams, photos, and plots; the
prevalence of photos is likely an artifact of the biomedical
emphasis of the PMC corpus.

3.1 Figure Analysis
Figure 1 illustrates the analysis pipeline used to perform
classification. We first download and extract the images in
AWS (Amazon Web Services). We then classify each figure
as either multi-chart or singleton. Each figure identified as
multi-chart is dismantled into a set of singleton figures. All
singleton figures (including those dismantled from multi-
chart figures) are labeled with one of five class labels: equa-
tion, diagram, photo, plot and table. The classified images
can be browsed online at viziometrics.org. In the following
sections, we will briefly describe the algorithm for each box
in Figure 1.

3.1.1 Figure Classification
To classify the images, we adapt the technique developed
by Coates et al. [28] and extended by Savva et al. [29] to
extract small patches from the corpus of images, cluster
these patches into groups, then re-encode each image as a
histogram over these groups. This histogram can be used as
a fingerprint to classify images.

First, we normalize an image to a 128×128 grayscale
image with a constant aspect ratio. Then, we randomly
extract a set of 6×6 patches from each training image and
normalize the contrast of each patch. Adjacent pixel values,
and therefore adjacent patches, can be highly correlated. To
increase contrast and better distinguish different patches,
PCA whitening is applied on the entire patch set.

Next, we cluster the set of patches using k-means (k
= 200) and to identify 200 common patch types, one for
each cluster. A representative patch for each patch type,
called a codebook patch, is derived from each cluster. For
each training image, we generate a new set of patches by
sliding a 6×6 window in one-pixel increments across the
image. For each such generated window patch, we find the

TABLE 2
Evaluation of multi-chart figure classifier and figure-type classifier using

10-fold cross validation.

Figure Type Precision Recall

Multi-chart 92.9% 86.3%

Singleton 89.3% 94.6%

Equation 95.4% 95.1%

Diagram 84.2% 84.1%

Photo 94.5% 97.3%

Plot 91.5% 90.2%

Table 95.1% 93.1%

most similar codebook patch via Euclidean distance and
increment a counter for that codebook. The set of codebook
counters forms a histogram, and this histogram forms the
feature vector used to train the classifier.

To account for the global structure of common visualiza-
tions (e.g., axes are typically found on the left and bottom
of the image), each image is split into four quadrants and a
separate 200-element histogram is computed for each quad-
rant. The final feature vector of 800 elements is obtained
by concatenating the four 200-element histograms. These
feature vectors are then classified using a Support Vector
Machine (SVM).

We evaluated five different classifiers: K-nearest neigh-
bors, random forest, logistic regression, decision tree,
and SVM with RBF kernel. The corpus we used for
training was randomly sampled from the PMC corpus
(ftp://pub/pmc/ee/). We manually labeled 3,271 images as
one of five categories: photos (782), tables (436), equations
(394), visualizations (890), and diagrams (769) and used
these hand-labeled data to train the classifiers. We compared
the accuracy of the five classifiers obtained by 10-fold cross
validation and selected SVM with an RBF kerneal based
on its superior performance performance (Figure 2(A)). To
fine tune the SVM parameters (kernel, gamma, and penalty

viziometrics.org
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Fig. 3. Multi-chart figure dismantling. The figure shows the intermediate steps for dismantling multi-chart figures. The splitting algorithm recursively
segments the raw images into several sub-images. The merging algorithm then aggregates auxiliary fragments with nearby standalone figures to
produce the final segmentation.

parameters), we randomly reserved 25% of the images for
a testing set and trained the classifiers on the remaining
75% for each category, then used a grid search method
to complete the task (part of the sklearn library). Figure
2(B) shows the ROC curves for identifying diagrams. The
optimized model is run by the RBF kernel with gamma
of 0.001 and a penalty parameter of 1000. We focused on
diagrams because the RBF kernel performs particularly well
in recognizing diagrams. Once the model parameters are
tuned, we evaluated the model by using the testing set and
then trained the final model with all images. In this paper,
we report the evaluation of classification performance (Table
2) by 10-fold cross-validation on the full training corpus of
3,271 images. The final classification accuracy for all images
is 91.5%

3.1.2 Figure Dismantling

The use of multi-chart figures complicates classification. For
example, the figure in Figure 3 consists of four sub-figures: a
photo, a plot, and two diagrams. Approximately 30% of all
figures in our corpus required dismantling. To achieve more
accurate medical image retrieval, early studies segment
the diagnostic photos from photo arrays by recognizing
the sharp gradient at the boundaries of photos [10], [11],
[12]. This simple approach satisfies the need for separating
photos, but it is ineffective for separating plots or diagrams
because the boundaries take many different forms. Cheng
et.al extends this approach with Fuzzy Logic Controller
clustering to handle plots and diagrams [30]. Unfortunately,
their algorithm is not available and no evaluation was
provided.

The primary goal of our dismantling algorithm is to
extract the component figures. Figure 3 illustrates the pro-
cess of splitting a multi-chart image into four sub-figures.
The algorithm first splits an image into blocks based on
background color and layout patterns (Figure 3(B)). The
splitting algorithm separates the input image into vertical

and horizontal orientations, recursively, until it does not
find any available fragments. An SVM-based binary clas-
sifier then distinguishes fragments that represent complete
charts from fragments that contain only incomplete auxil-
iary information (e.g., axis labels, tick marks, and legends
highlighted in blue color in 3(B)). Next, we recursively
merge the fragments to their adjacent blocks in the same
splitting level. After completing all possible merges among
siblings, we transfer the newly merged blocks to their par-
ents level as new blocks and then re-classify them. This
process ends when it completes the possible merging in
the top level. We found that the splitting and merging
steps may produce different results from different initial
splitting orientations (horizontal or vertical). Consequently
we defined (and evaluated) a heuristic score function to
choose between orientations based on the homogeneity of
the shape of the sub-figures, based on the observation that
authors tend to follow repeatable patterns in laying out sub-
figures. The higher-scoring decomposition is chosen as the
final output (3(C)). The algorithm achieved a recall of 82.9%
and a precision of 84.3% with respect to manual dismantling
on a set of 500 multi-chart figures randomly sampled from
PMC. That is, the algorithm found 2743 sub-figures, 2499 of
which were among the 3013 extracted manually as ground
truth. The details of the algorithm are explained in an
earlier paper [27]. Since our original paper was published,
Taschwer et al [31], Wang et al [32], and Santosh et al. [33]
have proposed methods for related problems.

3.1.3 Multi-chart Figure Classification

Attempting to dismantle every figure image in our corpus
would be prohibitively expensive and extremely wasteful;
only about 30% of the images are multi-chart figures. We
therefore developed a simple and fast pre-classifier to dis-
tinguish multi-chart figures from singleton figures in order
to reduce the number of dismantled singletons.
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Fig. 4. Recognizing mulfti-chart images. After splitting the figure into distinct blocks, the dismantling algorithm marks the effective figure regions
(EFR) then downsamples the EFR into n× n blocks that form a n2 × 1 feature vector. These vectors are used to train the classifier.

We designed the method based on two observations: that
multi-chart figures tend to have a different size and shape
than singleton figures, and that the layout of a multi-chart
figure tends to follow a regular grid pattern. Based on these
two observations, we constructed a feature vector with K
(K = M + N) elements: M elements based on the size and
shape, and N elements based on the grid layout. The M ele-
ments consist of the image height ratio(heighti / heightavg)
and the image width ratio(widthi / widthavg) where the
denominators are average image height and average image
width of all images in the training set respectively. The N
elements are derived from the output of splitting algorithm
of the dismantler.

Figure 4 shows the splitting, and the red lines indicate
the boundaries between fragments. For each block, we mark
the minimal rectangular region that contains non-empty
pixels, so that we can obtain the effective figure regions
(EFR) and use them as a mask. We subdivide the mask
into n × n blocks and compute the proportion of EFR in
each block as defined as the EFR density map. Finally, we
squeeze the values into a 1-D vector with n2 elements.

We set n = 10 as the final parameter (M = 100) and apply
the same technique described in the previous section to train
the figure classifier. The final model is optimized by using
a RBF kernel with gamma of 0.001 and a penalty parameter
of 1000. As noted above, we obtained 91.8% accuracy by 10-
fold cross-validation on the entire training set comprising
880 multi-chart figures and 1067 singleton figures. The recall
and precision for each class are shown in Table 2.

3.2 Measuring Scholarly Influence
To assess the influence of a particular paper, we used the
article-level Eigenfactor (ALEF) score. [34], [35], [36]. ALEF
is a modified version of the PageRank algorithm [37]. The
algorithm uses random walk on the article-level citation
graph, where each vertex is a paper and each directed
edge is a citation. Because a random walker will only move
backwards in time using the standard PageRank approach,
we modify the algorithm to reduce the number of steps the

random walker takes and teleports the random walker to
links rather than nodes [34], [38].

The ALEF ranking method has been shown to outper-
form simple citation counts and standard PageRank ap-
proaches [36]. The ALEF method took second place in a
recent data challenge sponsored by the ACM International
Conference on Web Search and Data Mining (WSDM) 2. Al-
though ALEF is an effective measure of article-level impact
[36], the qualitative results of this study would not change
if we simply used raw citation counts as our measure of
impact.

4 EXPLORING VISUAL PATTERNS IN THE LITERA-
TURE

We use the classified figures to study patterns in the use of
visual information across scientific domains, across publica-
tion venues, and over time. We also used the classifications
to examine the effect on scholarly impact.

More broadly, we are interested in better understanding
how complex results are communicated across disciplinary
boundaries and to the general public, and how this commu-
nication channel can be optimized to increase the bandwidth
of scientific discourse.

Our method of longitudinal analysis of all figures in a
domain is generalizable both to other domains and to other
questions related to demography, editorial trends, narrative
style, and influence. In this paper, we provide preliminary
results using this method and discuss the findings.

4.1 Dataset Details and Preprocessing

We use the set of images described in Section 3, but refine
this dataset to avoid biases in four ways: First, our analysis
of impact depends on having an ALEF score available,
so we remove all papers with no ALEF score available
(typically because the paper attracted zero citations, and a

2. http://www.wsdm-conference.org/2016/wsdm-cup.html



2332-7790 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2017.2689038, IEEE
Transactions on Big Data

7

Fig. 5. The distribution of figure types across journals show an emphasis
on plots and diagrams relative to tables, and identify visualization-heavy
venues such as Cell Death and Disease. We considered the top 49
highest-impact journals in PMC that had at least 850 papers available
in the corpus, where impact is measured as Article Influence (AI) (the
black bar). Each stacked bar shows the average density of each figure
type across all papers published in the journal. The density of a figure
type is the number of instances of that type divided by the page count.
The category “Others” contains 288,953 papers from other journals.

few negligible cases where processing errors prevented the
calculation from completing).

Second, for some papers (less than ten percent of the
corpus), the total number of pages could not be determined,
preventing us from calculating figure densities. PMC does
not report page counts in the XML so we had to determine
the page counts using the PDF files provided. However,
some papers had no PDF file included so we could not
determine the page count.

Third, we remove papers published before 1997 since the
number of papers per year from that time is less than 300
and is strongly biased toward a small number of journals
that were indexed by PubMed during that period.

Forth, we exclude 86,205 papers with zero figures since
we cannot properly distinguish between two situations: (1)
papers that were published containing no figures and (2)
papers that were published with figures, but for which
the figures were not provided to PMC. Generally, more
recent papers are more likely to fall into case (1), since the
procedure to upload figures separately was more commonly
used in the past. Papers corresponding to case (2) (i.e., older
papers) can skew the results since older papers tend to have
more citations and therefore higher ALEF scores.

The papers that failed to meet one or more of these
criteria appeared to be distributed uniformly across the
overall dataset, so any bias created by their removal appears
negligible.

After these preprocessing steps, the dataset includes
494,663 papers and 6,897,810 figures (after dismantling),
excluding equations. We exclude equations because not all
equations were represented as figures and sometimes mul-
tiple equations appear in a single figure, making it difficult
to estimate the total number of equations.

Some of the PMC literature is in pre-print formats rather
than the official journal format. For these papers, we use
the total number of pages from PMC. As a result, the page
count may be different than the actual paper. In addition, we
underestimate the total number of tables from those authors
who use only latex or Microsoft Word to construct their
tables, since these authors typically do not provide tables
as separate images.

The dataset does not necessarily represent all relevant
papers. Authors of the papers analyzed here can voluntarily
select to submit papers to PMC, and PMC will clearly tend
to attract papers in the life sciences with an emphasis on
human biology. In particular, Nature publishes a significant
number of Physics papers, but these papers will be under-
represented in PMC.

4.2 Understanding Visual Patterns Across Disciplines

To analyze the patterns of visual encodings across disci-
plines, we normalize the individual figure counts by the
total number of pages in order to measure the density of
each figure type. This figure count normalization is similar
to the method used by Fawcett et al. [23] in their analysis
of equations. It ensures the values are comparable between
articles with diverse lengths.

Next we aggregate the figures and papers by journal
and research topics to see how figure types vary across
publishing venues and disciplines. Figure 5 and Figure 6
show the average figure density of journals and research
topics for which we were able to collect at least 850 or
1000 papers published during 1997 to 2014 from PMC,
respectively. Figure topics were assigned used Thomson-
Reuters’ Journal Citation Report (JCR) category system.

In Figure 5, we restricted the analysis to those journals
with at least 850 articles in the corpus. The stacked bars
present the densities of diagrams, photos, visualizations,
and tables, from left to right. Equations are not considered in
this case because defining the quantity of equations can be
vague: a single image may contain any number of equations,
and our dismantler algorithm was not designed to parse
equations. The thin dark bars represent the impact of each
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journal as measured by ArticleInfluence (AI) for the journal
[39]. AI is a journal-level metrics whereas ALEF is an article-
level metric.

In Figure 6, we used the average ALEF score to estimate
the value of topic areas because topic areas consist of over-
lapping journals. The AI scores is a citation metric for mea-
suring journal influence [39]. The underlying citation data
comes from Thomson-Reuters’ JCR. Journals and research
topics are listed by impact in descending order. Due to the
limit of page capacity, we show only the top 49 items and
gather the papers from small-collection journals and lower-
rank journals into “Others.”

Figure 5 shows the top 49 journals ordered by AI.
Differences exist between journals. The journal Cell Death
and Disease relies heavily on microscopy and experimental
evidence, and we see this emphasis manifest as a signif-
icantly higher number photos and plots. We can see that
multidisciplinary journals, such as the Nature series and the
PLoS series exhibit a balance of figure types. Qualitatively,
many of the journals with high figure-per-page counts are
also high in AI. Further, papers from the top one-third
journals (16 out of 50) tend to have more diagrams. Journals
emphasizing prose-oriented case studies are exceptions and
have fewer figures: British Medical Journal, Diabetes Care, and
Emerging Infectious Diseases. In comparison, papers from the
journals near the tail show lower diagram density. We will
make this observation statistically precise in Section 4.4.

Using Thomson Reuters’ JCR, we can assign each journal
to a research topic, then repeat the analysis of figure distri-
bution by research topic rather than journal. We describe the
method used to assign topic labels in more detail in Section:
3.2.

Figure 6 shows the disciplines for which at least 1000
papers were available. Differences between disciplines in
figure type density are apparent. For example, cell biology
and pathology have a relatively high number of photos
per page, whereas mathematical and computational biology
and medicinal chemistry have fewer photos per page and
relatively more diagrams and plots per page. Biology and
internal medicine tend to have relatively more tables per
page, suggesting an emphasis on (or tolerance of) presenting
quantitative results numerically. We conjecture that these
patterns relate cultural norms for publication rather than
specific research methods; that certain fields expect a certain
“syntax” for a research paper and that the distribution of
figures is a part of the syntax. A study of these conjectures
is beyond the scope of this paper.

4.3 Visual Patterns Over Time

We analyze patterns of visual information over time by
segmenting the data into different publishing years. The
earliest paper we collected from PMC was published in
1937, but relatively few papers earlier than 1997 are included
(biasing the corpus). We plot the total number of papers in
our database from 1990 to 2014 in Figure 7. Paper quantity
reaches the thousand mark in 1997 and the ten thousand
mark in 2007. In 2008, NIH mandated that authors upload
their papers to PMC, partially explaining the growth of
the corpus. Papers can be uploaded at any time for any
publication year, so we do not necessarily see an increase

Fig. 6. Figure distribution by research topic show that microbiology
topics tend to emphasize visual presentation of ideas. Topics were
determined by the journal categories in Thomson Reuters’ JCR. We
show the highest-impact 49 topics that have at least 1000 papers,
where impact is the average of all papers assigned to that category.
The category “Others” includes 216,380 papers from other topics and
papers without topic labels.

in later papers. The average ALEF score increases until
2000 and then decreases, consistent with most measures of
impact that are inherently time-sensitive.

The “hump” that occurs in Figure 7 around 1997 to
2002 is attributable to a bias in the corpus: in this period,
the corpus was dominated by just three journals: Journal
of Cell Biology(38%), Journal of Experimental Medicine(31%),
and Journal of General Physiology(8%). As more journals
were added to PMC, this sampling bias decreased, and
the patterns stabilized. After 2006, the number of diagrams
per page remains relatively consistent, and a small but
consistent growth in the number of plots and tables per
page is observed. We conjecture that these increases could
be attributable to an increased emphasis on data-intensive
science in the biological and biomedical disciplines, but
another possibility is that such figures became easier to
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Fig. 7. The distribution of figure types in the PMC corpus over time. The
top figure shows the number of papers increasing dramatically in the
mid-2000s, which can be explained by a change in sponsor rules: NIH
required authors to submit their papers to PMC. The “hump” of impact
between 1997 and 2005 may be attributable to author bias in voluntarily
uploading their highest-impact papers. After 2006, the increasing uses
of plots and tables may be attributable to increased emphasis on data-
intensive research. The density of photos and diagrams are consistently
flat over time. The bottom plot provides context: the average page length
per paper over time, and the number of papers in the corpus over time.

create thanks to improved tools resulting in increased use.
In Figure 8, we select five journals with unique features

for closer inspection: Nature (highest impact according to
our measures), Cell Death and Disease (highest figure den-
sity), British Medical Journal (lowest figure density), Genome
Biology (unusually low proportion of photos) and PLoS One
(largest number of papers). Nature exhibits an increase in
figure density over time, driven primarily by an increase
in plot density which may reflect an increased emphasis
in data-intensive science. For the journal Cell Death and
Disease, one sees the same effect of growing figure density
over time, which corresponds to an increased use of multi-
chart figures: 81% of the figures are multi-chart compared
to an average of 38%.3 In contrast, the British Medical Journal
exhibits low figure density and a gradual decrease in the
use of figures over time. Tables are used more in proportion
compared to most journals and photos are extremely rare.
We conjecture that the decrease in visual information over
time may be related to a known shift in focus for BMJ,
in which the editor has intentionally focused on topics of
broad public interest [40]. It is possible that heavy use of
quantitative data in the form of plots may make articles less
accessible. Genomics Biology was selected for its unusually
low proportion of photos, which appears consistent over
time. We do see the density of plots increasing significantly
since 2011, following the global trend. We selected PLoS
One because of the extremely large number of papers in the
corpus. Because it is broadly multidisciplinary, the patterns
of figures represent many fields of study and we do not
expect, nor do we see, any distinctive pattern. PLoS One
may represent a microcosm of the overall literature in this
regard.

4.4 Visual Patterns Related to Impact
In this section, we consider the relationship between pat-
terns of visual encodings and scientific impact.

Figure 9 shows qualitatively that higher impact papers
tend to have both a higher density and higher proportion of

3. Equations are not taken into account.

Fig. 8. We choose five specific journals for closer inspection: Nature
(highest impact), Cell Death and Disease (highest figure density), British
Medical Journal (lowest figure density), Genome Biology (unusually low
proportion of photos) and PLoS One (largest number of papers). Nature,
Cell Death and Disease and Genome Biology exhibit a recent increase
in plots-per-page, consistent with the overall trend. We conjecture that
the articles in these high-impact journals are becoming more data-
centric. Moreover, Nature and especially Cell Death and Disease show
a heavy use of figures, in part because these journals tend to have
greater proportions of multi-chart figures (67% for Nature and 82% for
Cell Death and Disease relative to 30% for the entire image set.) The
British Medical Journal shows a different trend in which figure density
gradually decreases; the mechanism behind this trend is unclear. PLoS
One shows no significant change from its launch in 2006.

both plots and diagrams, but a lower proportion of photos.
The visual encoding of quantitative information therefore
appears to correlate with impact. We chose four bins that
characterize the Eigenfactor score distribution, which tends
to follow a power law distribution. We chose the four bins
to roughly correspond to boundaries at 95%, 75%, 50%. The
bin boundaries are not these numbers exactly because many
papers have indistinguishable Eigenfactor scores4, and we
did not want to artificially separate two papers with the
same score into two different bins. Instead, we move the
boundary to the next highest threshold. The bin boundaries
then become 5%, 23%, and 45%, with the lowest bin (Bottom
55%) containing all papers with Eigenfactor score of zero.
For each group, we average the figure densities for each
of four figure types and produce a histogram as shown in
Figure 9.

The results in Figure 9 do not change when adjusting
bin sizes. We regroup the papers binning by every half-
percentile (99.5%, 99.0%, etc.) and compute the correlation
coefficient. Table 3 shows the binned correlation coefficients
for the four figure types. The first and second numbers in
each cell are the correlation coefficients when including and
excluding papers from PLoS One respectively. We separate
the influence of PLoS One, as Figure 5 shows that PLoS
One exhibits a significantly higher table density then other
journals. The key result is that higher diagram density and
higher proportion of diagrams are linked to higher impact,
while higher proportions of photos are linked to lower im-
pact. These results indicate that high-impact papers may
tend to use more diagrams, but also that diagrams tend
to have a stronger relationship with impact than plots.
One possible interpretation of these results is that clarity of
exposition contributes to impact: illustrating an original idea

4. Any two papers with Eigenfactor difference within 1E-12 are
regarded as having the same score.
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Fig. 9. Impact versus (A) figure density and (B) proportion of figures. We rank papers by ALEF and group them into 4 bins. Papers with the same
Eigenfactor are grouped into the same set. Any two papers with Eigenfactor difference within 1E-12 are regarded as having the same impact, which
is why the bins are not evenly distributed. For each set, we average the densities and proportions of 4 figure types.

TABLE 3
We estimate the correlation between the ALEF score and figure density
(left column) and proportion of figures (right column). Each table entry
X(Y ) indicates the correlation including (X) and excluding (Y ) papers
from PLoS One, a journal that tends to bias the results due to a high

proportion of tables. Correlations excluding PLoS One are more
strongly positive for all figure types. The entry NSS indicates that the

result was not statistically significant. Overall, high proportions of
diagrams are linked to high impact while high proportions of

photographs are linked to lower impact (negative correlation).

Figure Type

Correlation Coefficient

Figure Density Prop. of Figure

(w/o PLoS One) (w/o PLoS One)

Diagram 0.84 (0.92) 0.61 (0.52)

Photo 0.57 (0.70) -0.69 (-0.63)

Plot 0.60 (0.80) NSS (NSS)

Table NSS (0.78) NSS (NSS)

visually leads to more impact then simply reporting experi-
mental results. Previous studies have shown that diagrams
were more effective than text in helping readers develop
deeper understanding of the material [41]. We conjecture
that the negative correlation with photographs may suggest
that tight page limits associated with high-impact journals
may lead authors to sacrifice photographs as extraneous, but
it is possible that photographs lack the explanatory effects
associated with carefully designed abstract visual encodings
(diagrams, plots).

As described in Section 4.1, 86,205 papers were excluded
because they reported no figure files in PMC. If we in-
clude these papers in the analysis (that is, intentionally
misinterpreting the situation for those papers for which the
figures were simply not uploaded to PMC), the average
ALEF score decreased by just 5%, and the binned correlation
coefficients vary be only about 10%. The relatively small
effect is attributable to the fact that 60% of the 86,250 papers
have an ALEF score of zero; that is, papers with zero
figures tend to be very low-impact. Our qualitative result

is therefore the same whether or not we attempt to consider
these ambiguous cases: higher impact papers tend to have
higher density of diagrams and plots.

5 A BROWSER FOR THE VISUAL LITERATURE

Consider a biologist in search of the phylogenetic tree
associated with a virus. Using a conventional academic
search engine, she enters keywords (perhaps the name of
the virus and the word phylogenetic), retrieves a list of
candidate papers, and, inspecting the title for relevance,
opens each paper for manual review. This process operates
at the wrong level of abstraction, as the search is focused
on a particular method that is associated with a visual
encoding — a phylogenetic tree has a distinctive visual
representation. Consider another case where a researcher
wants to compare a number of different designs for solid-
state laser diodes. She would like to find both scanning
electron microscope (SEM) images as well as diagrams
illustrating the designs, with goals of performing non-trivial
analysis across figures: comparing the SEM photos with the
corresponding diagrams (perhaps from a different paper), or
a comparison of leakage currents by inspecting a set of plots
showing the current-voltage curves. With both examples,
keyword search followed by manual inspection of papers to
gather specific visual results seems unnecessarily inefficient.
We aim to use our classification pipeline to power a more
efficient approach to this task using a figure-centric search
application [42].

The system indexes the authors, titles, abstracts and
figure captions of the corpus of papers; keyword searches
probe this index to find relevant images. Result figures are
ordered by their ALEF scores, helping to reduce attention
on low-impact papers. In the default layout, figures are
arranged as a “brick wall” to make better use of screen
real estate as in Figure 10(A). Users can retrieve additional
figures by scrolling down to the bottom of the page. The
color of figure border indicates its figure type as identified
by our classifier. Users can restrict the results by figure type
(using the results of our classifier) by using the checkboxes
under the search box: composite, photo, table, plot, diagram,
or equation. For instance, the biologist seeking phylogenetic
trees can ignore any figures other than diagrams. We are
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Fig. 10. The user interface of the VizioMetrics.org search engine. Result figures are either arranged via (A) the brick-wall layout or (B) a conventional
layout bundling figures with literature title. Figures are labeled by different colors based on their types. (C) Clicking figures will show article details
such as authors, abstract, figure captions, hyperlink to full PDFs and related figures. We also provide a verification form to encourage user verifying
our machine-labelled figure type and help us gather more ground-truth label.

currently extending our categories to include more specific
diagram types such as phylogenetic trees to enhance this
feature.

Figures support a number of interactions. The slider
allows zooming into figures to inspect fine detail. Clicking
on the figure brings up a metadata page displaying the title,
authors, abstract, caption, related figures and more (Figure
10(C)). Related figures from a target paper are selected using
the citation network between papers. Papers that cite or
receive citations from the target paper are likely candidates
with similar figures. We determine the citation similarity
using a recommender system that we recently developed
[35]. This recommender system is based on a hierarchical
clustering of an article-level citation network. In addition to
the brick-wall layout, we also provide conventional layout
(Figure 10(B)) that lists the figures in the context of the
paper in which they appear. This mode is designed for users
who are looking for particular papers, but who may recall a
memorable figure from the paper if not the title or author.
Viewing article titles together with figures may help them
narrow the scope.

5.1 Evaluation of Figure Search

We evaluate the relevance of the figure search for a figure-
based method search task. This task consists of using keyword
search for a particular method, with the intent of finding
figure that represent the result of using that method. Anec-
dotally, we find this task to be both common in practice and
poorly supported by paper-oriented search engines.

To evaluate the ability of viziometrics to support this
task, we measure the proportion of top-ranked results that
match the search term, using expert labeling as ground
truth. For example, a phylogenetic analysis typically pro-
duces a particular type of tree that is recognizable to re-
searchers. We report the proportion of the top 30 returned
figures that correspond to the method in question. We
choose the top 30 because it is the approximate number of
figures shown in a page without the need to scroll.

We consider the following questions: 1) Does the search
interface tend to retrieve relevant figures for figure-oriented
search tasks? 2) Which fields should be indexed to maximize
accuracy? 3) Does filtering the results for an expected figure
type (using the results of our classifier) improve accuracy?

To answer these questions, we use seven key
phrases associated with specific figure types as our
search terms: phylogenetic, metabolic pathway,
electrophoresis gel, confocal microscopy,
fluorescence, survival curve, and ROC curve.
For each term, we evaluate different indexing strategies:
caption only, abstract only, or abstract, title, author, and
caption. Finally, we consider what effect filtering by figure
type has on accuracy. For example, when searching for
phylogenetic, the figures associated with the term
are typically diagrams, so ignoring all other figure types
except diagrams should improve accuracy. Other search
terms are similarly associated with a dominant figure type:
phylogenetic and metabolic pathway are associated
with diagrams, electrophoresis gel, confocal
microscopy, and fluorescence are associated with
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photos, and survival curve and ROC curve are
associated with plots.

Figure 11 shows the results. Overall, 50% to 100% of
the results are relevant for each search term under the best
conditions. We find that caption-only indexing provides
the highest accuracy. The reason is that if a search term
is mentioned in the abstract or title, then all figures in
the paper are returned as results, lowering accuracy. We
find that properly filtering by figure type further improves
the accuracy, typically including 2-10 additional relevant
figures in the top 30 results. However, in some cases filtering
reduces accuracy; in these cases the classifier’s imperfect
type assignment is the culprit. For future work, we are
working to extract information from specific figure types to
enable more sophisticated content-based indexing. Despite
the improved accuracy achieved by caption-only indexing,
we index all fields in the current application to ensure that
we return relevant papers.

The search engine is available online at www.
VizioMetrics.org. Anecdotally, we have had users report
that they use the interface to find figures for textbooks
and presentations. They describe the system as the “google
images” for scientific figures.

The one significant limitation of Viziometrics.org is the
available content. Most scientific papers are held behind
publisher paywalls. In our first version of the system, we
have included figures from PubMed Central. Although this
open corpus includes millions of figures, it only represents
a small proportion of medically related research. Our hope
is to extend the corpus to all disciplines, but this goal will
depend on improved access to the scholarly literature.

6 FUTURE WORK

PubMed is focused primarily in the life sciences. Future
work will include extending this analysis to additional do-
mains, enabling a comparison of visual patterns across fields
of study. We will expand our figure database with literature
from diverse research areas and will continue to improve the
accuracy of our classifications; we are currently evaluating
a convolutional neural network classifier that appears to
offer a different tradeoff in quality and training time. One of
the key results of this paper is that more influential papers
tend to have more plots and diagrams. Next steps will be
refining this question and interpreting these preliminary
results to understand how figures influence impact. We
plan to expand the figure processing pipeline to include
additional types of figures (e.g., line charts or flow charts,
or domain-specific figures such as phylogenetic trees).

There are also many opportunities for exploring new
search tools involving figure classifications. We have re-
ceived informal feedback from users on ways in which
figure types could be used. For instance, tools to support
identification and directed search for specific figure types
such as metabolic pathways and phylogenetic graphs could
significantly accelerate research activities. In addition, in-
formation extraction from these specific figure types could
afford the recovery and organization of data in support of
meta-analysis activities. This information is inaccessible to
text-based search engines.

Fig. 11. We selected 7 key phrases used to describe specific methods in
biology that are associated with specific visual signatures. We report the
proportion, of the top 30 returned figures, that correspond to the search
term. When one searches ROC curve, the results should include ROC
curves. We find that filtering improves the results in all cases except a
few of the plot searches. We also find that, when restricting the search
index to only captions, the results tend to be slightly better. The reason is
that if a search term is mentioned in the abstract or title, then all figures
in the paper are returned as results, lowering accuracy.

One of the bottlenecks for the classifiers is the lack of
labeled figures with which to train the models. We are
developing a crowdsourcing component to the VizioMet-
rics.org platform that will integrate with the search service
to acquire ground-truth labels as users interact with the
system to complete their own tasks. The labels, images,
code, and all our data will be freely available for researchers
to explore their own questions.

7 CONCLUSIONS

In this study, our aim is to facilitate research on scientific
figures, an area we call viziometrics. It extends prior work
in bibliometrics and scientometrics but focuses on the role
of visual information encodings. We developed a figure
processing pipeline that automatically classifies figures into
equations, diagrams, plots, photos, and tables. To facilitate
further research on this visual objects, we make both the
code and the data open for other researchers to explore.
By integrating the figure-type labels and article metadata,
we analyzed the patterns across journals, over time, and
relationships to impact. In different disciplines, we found
that the role of the five figure types can vary widely. For
instance, clinical papers tend to have higher photo density
and computational papers tend to have higher diagram and
plot density. In respect to visual patterns over time, we
found a growing use of plots, perhaps suggesting increasing
emphasis on data-intensive methods. Our key result is that
high-impact papers tend to have more diagrams per page
and a higher proportion of diagrams relative to other figure
types. A possible interpretation is that clarity is critical for
impact: illustrating an original idea may be more influential
than quantitative experimental results. We also described
a new application to search and browse scientific figures,
potentially enabling new kinds of search tasks. The Vizio-
Metrics.org systems affords search by keyword as well as
figure type, and shows results in a figure-centric layout.
We believe more interesting and useful applications can be

www.VizioMetrics.org
www.VizioMetrics.org
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inspired by the concept of viziometrics. We also encourage
people to use our publicly available corpus and software to
explore this area of research and create a new community of
interest.
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