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ABSTRACT
We consider how patterns of figure use in the scientific lit-
erature relate to impact, change over time, and vary across
disciplines. We use a convolutional neural network to em-
bed figures as feature vectors in a high-dimensional space,
then visualize this space as a 2D heatmap to expose pat-
terns. We consider how these patterns vary with respect to
time, impact, and discipline, concluding that high-impact
papers tend to include significantly more data-carrying fig-
ures (i.e., visualizations), despite a downward trend in such
figures overall. We also show how this approach can be
used to bootstrap targeted information extraction projects
for specific figure types, describing one such project involv-
ing phylogenetic trees.

1. INTRODUCTION
Visualizations are the currency of scientific communica-

tion, but have largely been untouched by computational
techniques due to the relative opacity of images compared
to text or citations.

We analyze the use of visualization in the biomedical sci-
entific literature by embedding figures as 2048-element vec-
tors using a convolutional neural network, then inspecting
and reasoning about the principal components of these vec-
tors.

We find that photos and diagrams dominate the literature,
but by visualizing the residuals from this baseline signal,
we see an apparent overall increase in the use of complex
diagrams and dense imagery.

However, among higher-impact papers, data visualizations
are far more common than they are in lower-impact papers.
When we consider differences by journal, we find that certain
patterns of figures characterize journals, perhaps suggesting
templates by through which authors can optimize the read-
ability for a particular audience.

In this short paper, we describe the unsupervised learning
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Figure 1: The first two primary components of 1.5M
figures from PubMed embedded using the ResNet
neural network architecture. The two obvious dense
regions of the map roughly represent quantitative
plots (left) and photographs (right). The red region
represents higher densities of figures.

pipeline we developed, as well as a set of online tools for
interacting with the aggregate visual literature.

We consider this analysis to be an initial foray into un-
derstanding how the use of visualization affects scientific
communication and impact, and how this use can be op-
timized. Moreover, these methods and tools allow identi-
fication of specific image types to enable specialized infor-
mation extraction procedures. We will describe one such
project, where we extract the data from phylogenetic trees
in order to augment online databases with information from
the literature.

2. RELATED WORK
Computer vision techniques have been used in the con-

text of conventional information retrieval tasks (retrieving
papers based on keyword search), including some commer-
cial systems such as D8taplex and Zanran. Search results
from these proprietary systems have not been evaluated and
do not appear to make significant use of the semantics of the
images.

In 2001, Murphy et al. proposed a Structured Literature
Image Finder (SLIF) system, targeting microscope images
[16]. A decade later, Ahmed et al. [1, 2] improved the model
for mining captioned figures. The latest version combines
text-mining and image processing to extract structured in-
formation from biomedical literature. The algorithm first
extracts images and their captions from papers, then clas-
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sifies the images into six classes. Classification information
and other metadata can be accessed via web service. How-
ever, SLIF focuses exclusively on microscropy images and
does not extend to general figures.

Choudhury et al. [18] proposed a modular architecture to
mine and analyze data-driven visualizations that included an
extractor to separate figures, captions, and mentions from
PDF documents [7] and a raw-data extractor for line charts
[8]. Chen et al. [5] proposed their search engine named Di-
agramFlyer for data-driven figures that extracts axis labels
and legend information via OCR and uses the extracted text
to drive the search. Other studies have proposed informatics
methods for retrieving maps of the brain through large-scale
image and text mining on fMRI images [17].

Other projects explored the patterns of figure use in the
literature. Hegarty et al. collected 1,133 articles from 9 psy-
chology journals and found that articles with fewer graphs
and more structural equation models were more frequently
cited[13]. This result was not supported by other in dif-
ferent disciplines: Fawcett et al. studied the citations of
28,068 papers published in the top three journals special-
izing in ecology and evolution and found that heavy use
of equations has a significant negative impact on citation
rates[10]. Tartanus et al. reported a positive correlation be-
tween number of graphs and the impact factors in journal
level by analyzing all papers published in 2010 from 21 se-
lected journals in agriculture[19]. Other studies investigate
how the use of figures differs by authorship patterns. Ca-
banac et al. analyzed 5,180 articles in the sciences and social
sciences and found that groups of authors used significantly
more tables and graphs than single authors[4]. Hartley et
al. investigated approximately 2,000 articles from 200 jour-
nals in the sciences and social sciences. They found that
men used 26% more figures than women, but found no sig-
nificant difference in their use of tables. In addition, they
didn’t find significant differences between men and women
in using either graphs and figures or tables in social science
articles[11]. Since counting figures manually is extremely
time-consuming, all of these studies were limited to specific
domains on a relatively small number of papers and journals.
Our approach is to automate the analysis using computer
vision techniques and machine learning, scale it to a large
corpus of papers to allow broader inferences, and release the
software and labeled data for other researchers to use.

3. PROCESSING THE FIGURE CORPUS
We process a sample of 1.5 million figures from selected

randomly from all papers uploaded to PubMed. In previous
work [15], we worked with the entire set of eight million fig-
ures from PubMed and developed a supervised classification
pipeline to label each figure into broad categories: diagram,
plot, photograph, or table. We considered how the density
of these categories related to impact, evolved over time, and
differed between journals, finding that plots and diagrams
are correlated with impact, suggesting the importance of vi-
sualization in scientific communication.

The limitation of that work was the need to provide class
labels a priori, which cannot capture the variety and nuance
of how researchers present information visually.

In this paper, we present preliminary results from an un-
supervised learning approach, attempting to understand —
qualitatively and quantitatively — how patterns in the vi-

Figure 2: Density deviation by year. The aver-
age figure density for 2006 (left) and 2012 (right)
are compared to the global average from 2003-2013.
Red regions represent a positive deviation from the
average and blue regions represent a negative devi-
ation. We see a relative increase in photos and sci-
entific illustrations and a relative decrease in quan-
titative plots.

sual literature relate to impact, change over time, and vary
by field.

We began by embedding each figure into a 2048-dimensional
space using a pre-trained neural network, ResNet[12] using
Keras [6], designed to extract features from a large corpus
of natural images. We continue to explore a modified archi-
tecture and re-trained model specialized for artificial images
in the scientific literature, but this model proved sufficient
for preliminary results.

Deep Neural Networks (DNN) have received considerable
attention over recent years in computer vision and object
recognition [14]. Trained on millions of images by leverag-
ing advances in GPU computing, these models can learn
sophisticated representations of images without any manual
feature engineering. Deep Residual Networks (ResNet) [12]
is the winning model in ILSVRC and COCO 2015 compe-
titions. In this work, we are using the ResNet with 50 lay-
ers that was pre-trained on ImageNet corpus [9] (a corpus
of 1.2M natural images collected from the web). While the
model was trained to recognize natural images, it is believed
[20] that internal representation might be general, allowing
for transfer learning - application of a model trained in one
domain to another similar domain. In our case, we are taking
are processing scientific images through ResNet model and
obtaining a 2048 dimensional representation from a hidden
layer, just beneath the final dense object recognition layer
trained for ILSVRC competition. To visualize this hidden
representation, we compute top two principal components
of this 2048-dimensional space. Top principal components
represent directions of largest variance in the space, allowing
us to get meaningful visualization in an unsupervised way.

We then ran PCA on the 1.5M vectors and plotted the
first two components as a heat map to convey density. The
results are shown in Figure 1. There are two main regions
visible in this 2D projection. On the left, the cluster roughly
corresponds to plots, diagrams, and other figures featuring
lines and text. On the right, the cluster roughly corresponds
to photographs. The substructures here are important, but
are not visible at this resolution. For example, figures to-
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Figure 3: Deviations from the average distribu-
tion of figures from high-impact papers (top 5%
as ranked by Eigenfactor) and low-impact papers
(those that have attracted zero citations). Low-
impact papers are characterized by photographic fig-
ures rather than data-oriented visualizations or sci-
entific illustrations.

ward the upper right tend to be more heavily processed pho-
tos, including microarray images and fluorescence plots. The
middle of the cluster, which we sample in Figure 1, tends to
contain more natural photographs.

Although this initial figure provides a rough sense of the
features extracted by the neural network, it does not deliver
much insight. In the remainder of this paper, we will con-
sider how various subsets of figures (those from high impact
papers, those from recent years, those from specific journals)
deviate from this global pattern, and discuss how those de-
viations might be interpreted. Further, we show how this
kind of analysis of the space of visualizations can be used to
bootstrap information extraction projects for specific figure
types.

All images were rescaled to 224x224 (keeping aspect ra-
tio and padding smaller images with empty space) and fed
through the first layers of a pre-trained ResNet model [12].
ResNet model was pre-trained on ImageNet dataset.

4. TRENDS OVER TIME
In Figure 2, we show the deviation from the year-weighted

average for two particular years in the corpus: 2006 and
2012. Blue regions represent a positive deviation from the
average and red regions represent a negative deviation. We
use the year-weighted average to account for the differences
in publication volume year-to-year; without this correction,
later years would appear to show a relative increase in all re-
gions of the map. We see a relative increase in rich, complex
diagrams, scientific illustrations, and dense imagery, and a
relative decrease in quantitative plots.

We attribute this increase to software improvements that
have made it easier to create high-quality diagrams and il-
lustrations.

It is tempting to assume that this shift indicates that di-
agrams, illustrations, and imagery are associated with im-

Figure 4: Deviations from the average distribution
of the figures from four different journals: British
Journal of Cancer, BMC Bioinformatics, Nucleic
Acids Research, and Environmental health perspec-
tives.

proved communicability or scientific impact; after all, why
would their use be increasing if they were not effective?
However, when we construct residual plots based on impact,
we see a different pattern, which we now describe.

5. RELATIONSHIP TO IMPACT
In Figure 3 we consider how the figures from the top 5%

of all papers ranked by Eigenfactor score [3] differ from the
global baseline. We contrast this set of high-impact papers
with the set of all papers that received zero citations.

The differences are greater for the high-impact papers be-
cause there are significantly more zero-citation papers. That
is, most papers have zero citations, so we would expect the
integral of the residuals to be smaller than that of high im-
pact papers; this appears to be the case.

Multiple patterns are clear: Among high-impact papers,
there are significantly more plots and diagrams (left-hand
blue region) and significantly fewer photographs. High-impact
papers exhibit a slight increase in a region at the lower right.
This region is visually similar to photographs, but contain
heavily processed images, including those from fluorescence
experiments and microarray experiments.

Our interpretation of these results is that high-impact pa-
pers are associated with empirical results and, potentially,
high-quality presentation of these results. This interpreta-
tion is primarily useful as a sanity check on our methods and
visualization. A more detailed analysis of this space to un-
derstand the additional structure in Figure 3, which we will
pursue as part of future work, will help us understand how
presentation of data related to effective scientific communi-
cation. We hope to use these methods to make actionable
recommendations for researchers in presenting their results
both to interdisciplinary audiences and intradisciplinary au-
diences.

6. VISUAL SIGNATURES BY JOURNAL
In Figure 4, we show the residual plots for four specific

journals to understand how these methods can help expose
the visual signature of a particular publication venue. We
posit that these signatures can help expose how different dis-
ciplines understand and communicate complex ideas. More
practically, we envision tools that can help authors pre-

1275



Figure 5: Figures illustrating phylogenetic trees
carry information otherwise unavailable in the text
of the paper. We can learn to identify phylogenetic
trees using the unsupervised methods we describe
without training data. Once a sample is available,
we can develop algorithms to extract the structure
and labels to construct a longitudinal database of
phylogenetic databases.

pare visualizations that will conform to particular styles and
therefore maximize their communicability to reviewers and
readers in particular communities. An important overall
goal is to enhance scientific communication between disci-
plines and with the general public, and we see the visual
literature as an important mechanism mediating such com-
munication.

At the upper left, the British Journal of Cancer is charac-
terized by photographic imagery (microscopy in particular),
and a particular type of data visualization that includes sur-
vival curves. In contrast, BMC Bioinformatics (upper right),
is characterized by data and diagrams, suggesting the impor-
tance of computational abstractions in the research: systems
architecture, illustrations of the operations of algorithms,
etc.

At the lower left, Nucleic Acids Research emphasizes richer
data-intensive visualizations, including heatmaps for gene
expression data. But also, rich scientific illustrations of pro-
teins and genetic structures are common.

Finally, at the lower right, the journal Environmental
Health Perspectives includes significant photographic data,
and may be associated with a particular “style” of plot with
a darker background.

The distinctions between these journals are remarkably
clear, and the patterns exhibited are consistent with our
intuition about the emphasis of each venue. This consistency
suggests that this method could be used to relate visual
patterns to styles of scientific communication across fields
and their relative efficacy.

7. VISUAL INFORMATION EXTRACTION
Using the unsupervised methods we describe, samples of

specific categories of figures can be readily identified for fur-

Figure 6: Screenshot of an interactive browser for
a sample of the figure dataset. Each point is a fig-
ure; the axes are defined by various clustering and
dimension-reduction methods.

ther analysis. In particular, certain types of images contain
information that is otherwise unavailable in the text of the
paper. For example, metabolic pathway diagrams summa-
rize hundreds of experiments visually to show the relation-
ships between molecular and cellular processes.

As part of the Viziometrics project, we are extracting in-
formation from phylogenetic tree diagrams (Figure 5). These
diagrams encode the results of computational and wet-lab
experiments to organize the evolutionary relationships be-
tween different species. By identifying the set of all such
figures in the literature, we aim to construct a longitudi-
nal database of phylogenetic information, evaluate it against
public phylogeny resources, and use the results to make in-
ferences about coverage and consistency in the literature.
For example, significant disagreement or gaps in certain ar-
eas of the tree of life could motivate new research.

In Figure 5, the left-hand side shows an example of the
kind of figure our algorithms are able to parse. On the right,
we summarize the major steps in the algorithm. The algo-
rithms use machine vision techniques to identify corners and
joints to form branches, then assemble branches into col-
lections, then use tracing techniques to connect collections
into subtrees. The subtrees are then connected to leaf labels
extracted using OCR techniques to form complete phyloge-
netic trees.

This project is just one example of the kind of research we
envision supporting with the visual map of the literature.

8. VIZIOMETRICS ONLINE
We have developed a set of online tools based on these

methods for working with viziometrics data.
Figure 6 is a screenshot of an interactive browser for a

sample of the dataset of figures. This interface is designed
to help quickly understand the behavior of the clustering and
dimension reduction methods: When structure is apparent,
what does it mean qualitatively? To facilitate this kind of
analysis, the user can hover over an individual point to view
the figure it represents. A lasso interaction over a set of
points displays all of the selected figures as thumbnails. In
Figure 6, the user has selected a set of data visualizations
forming a tight cluster; the visual similarity in this tight
cluster is clear.

The colors of the points represent the coarse-grained la-
bels assigned by the supervised classifier presented in prior
work. In this context, these labels help sanity check the
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clusters, guide user interaction, and in some cases uncover
misclassifications in the supervised framework.

9. CONCLUSIONS
We developed a pipeline for mapping the visual literature

using a pre-trained neural network and PCA, and used this
pipeline to present preliminary results that show how pat-
terns in figure use have changed over time, relate to impact,
and vary by field.

We consider these methods to be a baseline for new re-
search in how the use of visualization influences scientific
communication within and across fields.

These methods also enable targeted information extrac-
tion projects on specific figure types; we are currently ex-
ploring algorithms for extracting information from phyloge-
netic trees.
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