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Abstract
Perceived experts (i.e. medical professionals and biomedical scientists) are trusted sources of medical information who are especially 
effective at encouraging vaccine uptake. The role of perceived experts acting as potential antivaccine influencers has not been 
characterized systematically. We describe the prevalence and importance of antivaccine perceived experts by constructing a 
coengagement network of 7,720 accounts based on a Twitter data set containing over 4.2 million posts from April 2021. The 
coengagement network primarily broke into two large communities that differed in their stance toward COVID-19 vaccines, and 
misinformation was predominantly shared by the antivaccine community. Perceived experts had a sizable presence across the 
coengagement network, including within the antivaccine community where they were 9.8% of individual, English-language users. 
Perceived experts within the antivaccine community shared low-quality (misinformation) sources at similar rates and academic 
sources at higher rates compared to perceived nonexperts in that community. Perceived experts occupied important network 
positions as central antivaccine users and bridges between the antivaccine and provaccine communities. Using propensity score 
matching, we found that perceived expertise brought an influence boost, as perceived experts were significantly more likely to receive 
likes and retweets in both the antivaccine and provaccine communities. There was no significant difference in the magnitude of the 
influence boost for perceived experts between the two communities. Social media platforms, scientific communications, and 
biomedical organizations may focus on more systemic interventions to reduce the impact of perceived experts in spreading 
antivaccine misinformation.
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Significance Statement

Despite several high-profile examples of perceived experts spreading vaccine misinformation, no study has systematically surveyed 
the size and influence of the group of antivaccine perceived experts. On Twitter, perceived experts had a sizable presence in the set of 
users arguing COVID-19 vaccines are unsafe and ineffective, where they shared misinformation and academic sources. Perceived ex-
perts may be important antivaccine influencers, as they were overrepresented in central network positions and were significantly 
more likely to receive engagements compared to perceived nonexperts. The influence boost for perceived experts in the antivaccine 
and provaccine communities were not significantly different.

Introduction
Vaccine refusal poses a major threat to public health and has been 

a particular concern during the COVID-19 pandemic (1–4). An es-

timated 232,000 vaccine-preventable COVID-19 deaths occurred 

in unvaccinated adults in the United States across a 15-month pe-

riod (May 2021–September 2022) (5). Exposure to misinformation 

(i.e. false or misleading claims) may reduce vaccine uptake, in-

crease individual risk of morbidity and mortality, and potentially 

lead to disease outbreaks (6–8). The internet, particularly social 

media, is an important source of both vaccine information and 

misinformation (3, 7, 9–11). Social media surveillance has been 

proposed as a strategy to assess public opinion about vaccination 
and to study patterns in vaccine decision-making that may inform 
interventions (4, 12–15). For example, online social networks often 
contain influencers, users who play outsized roles in information 
propagation and receive significantly more engagement with their 
content than other users (16–20). Once identified, influencers may 
be targeted to optimize rapid dissemination of information (e.g. 
public service announcements or fact checks) (16, 20–22) or to re-
duce the propagation of harmful content with minimal interven-
tion (18, 23, 24).

Information consumers often use markers of credibility to as-
sess different sources (25, 26). Specifically, prestige bias describes 
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a heuristic where one preferentially learns from individuals who 
present signals associated with higher status (e.g. educational 
and professional credentials) (27–29). Importantly, prestige- 
biased learning relies on signifiers of expertise that may or may 
not be accurate or correspond with actual competence in a given 
domain (25, 30). Therefore, we will refer to perceived experts to de-
note individuals whose profiles contain signals that have been 
shown experimentally to increase the likelihood that an individ-
ual is viewed as an expert on COVID-19 vaccines (31), although 
credentials may be misrepresented or misunderstood (user pro-
files may be deceptive or ambiguous, audiences may not under-
stand the domain specificity of expertise, and platform design 
may impair assessments of expertise if partial profile information 
is displayed alongside posts). We focus on the understudied role of 
perceived experts as potential antivaccine influencers who accrue 
influence through prestige bias (4, 13). Medical professionals, bio-
medical scientists, and organizations are trusted sources of med-
ical information who may be especially effective at persuading 
people to get vaccinated and correcting misconceptions about dis-
ease and vaccines (29, 32–35), suggesting that prestige bias may 
apply to vaccination decisions, including for COVID-19 vaccines 
(36, 37).

Despite the large body of research on perceived experts who 
recommend vaccination, the prevalence and influence of per-
ceived experts acting in the opposite role, as disseminators of false 
and misleading claims about health has not been studied directly. 
Prior work on antivaccine influencers suggested a category analo-
gous to our definition of perceived experts and provided notable 
examples (2, 38–40). For example, former physician Andrew 
Wakefield and other perceived experts promulgated the myth 
that the measles, mumps, and rubella (MMR) vaccine causes aut-
ism (10), perceived experts appeared in the viral Plandemic con-
spiracy documentary and other antivaccine films (41–43), and 6 
of the 12 antivaccine influencers identified as part of the 
“Disinformation Dozen” responsible for a majority of antivaccine 
content on Facebook and Twitter included medical credentials 
in their social media profiles (44). Antivaccine users comprised a 
considerable proportion of apparent medical professionals on 
Twitter (a subset of perceived experts excluding scientific re-
searchers) sampled based on use of a particular hashtag (45) or in-
clusion of certain keywords in their profiles (46, 47). The number 
and population share of perceived experts in groups opposing 
COVID-19 vaccines on the microblogging website Twitter has 
not been assessed systematically, an important step toward 
understanding the scale of this set of potential antivaccine influ-
encers and one of the goals of this article. We ask (RQ1): How 
many perceived experts are there in the antivaccine and provac-
cine communities?

In addition to signaling expertise in their profiles, perceived 
experts may behave like biomedical experts by making scientific 
arguments and sharing scientific links but also propagate misin-
formation by sharing unreliable sources. Antivaccine films 
frequently utilize medical imagery and emphasize the 
scientific authority of perceived experts who appear in the films 
(42, 43, 48). Although vaccine opponents reject scientific consen-
sus, many still value the brand of science and engage with peer re-
viewed literature (49). Scientific articles are routinely shared by 
Twitter users who oppose vaccines and other public health meas-
ures (e.g. masks), but sources may be presented in a selective or 
misleading manner (40, 49–53). At the same time, misinformation 
claims from sources that often fail fact checks (i.e. low-quality 
sources) are pervasive within antivaccine communities, where 

they may exacerbate vaccine hesitancy (6, 18, 54, 55). To under-
stand the types of evidence perceived experts use to support their 
arguments, we ask (RQ2): How often do perceived experts in the 
antivaccine community share misinformation and academic 
sources relative to other users?

After describing the types of information that perceived ex-
perts share, we evaluate their ability to reach large audiences 
who help spread their messages. Various network centrality met-
rics describe the importance of a given user (node) to information 
flow based on connections to other users (Table S1). Centrality 
metrics are commonly used to rank the importance of different 
users within a social media network and help identify influential 
users (17, 56–59). Provaccine perceived experts were highly central 
in other Twitter networks discussing vaccines, but no prior ana-
lysis has focused on the the centrality of perceived experts in 
the antivaccine community (60, 61). In addition to a user’s central-
ity to the whole network, its ability to span opposing communities 
may be particularly significant (62). “Cognitive bridges,” or users 
who share content of interest to both antivaccine and provaccine 
communities may be particularly important due to their potential 
to connect vaccine skeptics with accurate information or to re-
duce vaccine confidence in provaccine audiences (53). If perceived 
experts occupy central and bridging network positions, they may 
be well-positioned to share their opinions with other users and 
share (mis)information about vaccines. We therefore ask (RQ3): 
Do perceived experts occupy key network positions (i.e. as central 
and bridging users)?

In general, perceived expertise may increase user influence 
within the provaccine and antivaccine communities. Although 
vaccine opponents express distrust in scientific institutions and 
the medical community writ large, they simultaneously embrace 
perceived experts who oppose the scientific consensus as heroes 
and trusted sources (10, 41, 43, 48). Medical misinformation 
claims attributed to perceived experts were some of the most 
popular and durable topics within misinformation communities 
on Twitter during the COVID-19 pandemic (12, 63). In fact, com-
pared to individuals who agree with the scientific consensus, indi-
viduals who hold counter-consensus positions may actually be 
more likely to engage with perceived experts that align with their 
stances (51, 64, 65). This expectation is based on experimental 
work on source-message incongruence, which suggests that mes-
sages are more persuasive when they come from a surprising 
source (66–68). This phenomenon may extend to the case where 
perceived experts depart from the expected position of support-
ing vaccination. In an experiment where participants were pre-
sented with claims from different sources about a fictional 
vaccine, messages from doctors opposing vaccination were es-
pecially influential and were transmitted more effectively than 
provaccine messages from doctors (69). However, this effect 
has not been tested for actual perceived experts commenting 
on real vaccines. By quantifying the relative impact of perceived 
experts within the antivaccine community compared to other 
individuals, we will establish whether they represent a particu-
larly influential group that should be specifically considered in 
interventions to encourage vaccine uptake. We ask (RQ4): Are 
perceived experts more influential than other individual users? 
We test whether perceived experts experience an influence 
boost in both the antivaccine community (H1) and the provac-
cine community (H2). We additionally hypothesize that per-
ceived experts experience a larger influence boost within the 
antivaccine community compared to the provaccine community 
due to source-message incongruence (H3).
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Results
Perceived experts are present throughout the 
coengagement network, including in the 
antivaccine community
For this study, we collected over 4.2 million unique posts to 
Twitter containing keywords about COVID-19 vaccines during 
April 2021. We constructed a coengagement network where users 
were linked if they their posts were retweeted (shared) at least 10 
times by at least two of the same users, meaning that they shared 
an audience (Fig. 1) (62). In Section S10 (Figs. S23–S39), we show 
that findings are robust to parameters used to define edges in 
the coengagement network.

The coengagement network consisted of 7,720 accounts linked 
by 72,034 edges (Fig. 1). Five thousand one-hundred and seventy- 
one of those accounts had English language profiles and corre-
sponded to individuals. Twenty-four of the individual users with 
English profiles added or removed expertise cues in their profiles 
over the course of the study and were thus excluded from the ana-
lysis. Of the remaining 5,147 accounts, 13.1% (678 users) were per-
ceived experts. Perceived experts rarely provided cues of expertise 
in their name alone. Instead, almost all users indicated expertise 
in their description, with approximately half of users including ex-
pertise cues in both their name and description (Fig. S2). There 
was substantial agreement between coders on whether a user 
was in an excluded category, a perceived nonexpert, or a per-
ceived expert (κ = 0.687, measured on a sample of 500 accounts).

The coengagement network was separated into two main 
communities (i.e. densely connected groups of users) using the 
Infomap community detection algorithm. One generally ex-
pressed a negative stance toward COVID-19 vaccines while users 
in the other were primarily positive, leading us to label the com-
munities as antivaccine and provaccine, respectively. The two lar-
gest communities contained 79.6% of total accounts and 66.1% of 
English-language individual accounts in the network. Stance to-
ward COVID-19 vaccines in popular tweets by users with the 
greatest degree centrality was relatively consistent, meaning 
that very few users posted a combination of tweets that were posi-
tive and negative in stance, although most users posted some neu-
tral tweets as well (Fig. S3). Further, stance was generally shared 
within communities; popular nonneutral tweets by central users 
in the antivaccine and provaccine communities almost exclusive-
ly expressed negative and positive stances, respectively, with a 
few exceptions. Although there was moderate inter-rater reliabil-
ity between coders on whether individual tweets were negative, 
positive, or neutral about vaccines (κ = 0.567), there was high 
agreement on the overall stance of each user (κ = 0.805 for 
whether a given user posted more antivaccine tweets, provaccine 
tweets, or equal numbers of both).

The provaccine community was larger than the antivaccine 
community (3,443 and 2,704 users, respectively). Perceived ex-
perts were present in both communities, but constituted a larger 
share of individual users in the provaccine community (17.2% or 
386 accounts) compared to the antivaccine community (9.8% or 
185 accounts) (Fig. 3). Both communities were further subdivided 
into subcommunities corresponding to language and geographic 
focus (Fig. S7 and Table S4).

Perceived experts in the antivaccine community 
share both low-quality and academic sources
We found marked differences in sharing of low-quality and aca-
demic sources depending on community and perceived expertise 
(Fig. 2). For both types of sources, we calculated a user-level metric 

(the proportion of users who shared at least one link of a given 
type; Fig. 2B and D) and a link-level metric (the proportion of all 
links that were of a given type; Fig. 2A and C). Perceived experts 
posted more frequently and included links in a greater proportion 
of their posts (Fig. S4).

Compared to the provaccine community, perceived experts 
and perceived nonexperts in the antivaccine community shared 
low-quality sources at significantly greater rates (P < 0.001 for pro-
portion of links and users). Low-quality sources were almost ex-
clusively shared in the antivaccine community, although 
low-quality sources generally comprised a relatively small pro-
portion of assessed links (Fig. 2A and B). Many users in the antivac-
cine community shared at least one low-quality link (30% of 
perceived experts and 31% of perceived nonexperts) compared 
to about 0.8% of users in the provaccine community (3 perceived 
experts and 14 perceived nonexperts) (Fig. 2B).

In both communities, perceived experts shared academic re-
search links at a significantly greater rate compared to perceived 
nonexperts (Fig. 2C and D) (P < 0.001 for proportion of links and 
users). Among perceived nonexperts, there was significantly 
greater academic link-sharing in the antivaccine community 
(P < 0.001 for proportion of links and users). About 10% of per-
ceived experts in the antivaccine community shared both aca-
demic and low-quality sources, while approximately 20% shared 
only academic or only low-quality sources (Fig. S5). Right-biased 
partisan sources were significantly more prevalent in the antivac-
cine community, but there was no significant difference between 
communities in propensity to share left-biased partisan sources 
(Fig. S6).

Perceived experts are overrepresented as central 
and bridging users
Although perceived experts represented a relatively small share 
of the individual users in the coengagement network, they dispro-
portionately occupied important positions in the network as cen-
tral and bridging users (Figs. 3 and 4). Perceived experts were 
overrepresented among users with the greatest betweenness, de-
gree, and PageRank centrality in both communities (Fig. 3; see 
Table S1 for an explanation of centrality metrics in the coengage-
ment context).

Perceived experts in both communities were highly overrepre-
sented among the 500 users with the greatest betweenness cen-
trality (P < 0.001 for both communities) and overrepresented 
among the 50 users with the greatest betweenness centrality by 
a factor of about two (P = 0.014 and P < 0.001 for the antivaccine 
and provaccine communities, respectively) (Fig. 3).

Ranking on degree and PageRank centrality, perceived experts 
were more strongly overrepresented as central users in the anti-
vaccine community compared to the provaccine community 
(Fig. 3). Perceived experts in the antivaccine community were 
about two times more prevalent in the group of central users 
(20% of the 50 top users ranked on both metrics) compared to their 
share of the population, while perceived experts in the provaccine 
community were overrepresented by a factor of 1.6. By both met-
rics, perceived experts in the antivaccine community were signifi-
cantly overrepresented in the 500 most central users (P = 0.001 
and P < 0.001 for degree and PageRank centrality, respectively) 
and the 50 most central users (P = 0.014 for both degree and 
PageRank centrality). In the provaccine community, perceived ex-
perts were significantly overrepresented in the 50 most central 
users (P = 0.032 for both degree and PageRank centrality) but not 
in the 500 most central users (P = 0.1038 and P = 0.082).
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Perceived experts were significantly overrepresented in the 
groups of the 500 and 10 top bridges between the provaccine 
and antivaccine communities (P < 0.001 and P = 0.001, respect-
ively), but not significantly overrepresented in the 50 top 
bridges (P = 0.09) (Fig. 4). About 20% of the top 500 and 50 users 

ranked by bridging scores were perceived experts, and five of 
the 10 users with the greatest bridging scores were perceived 
experts (Figs. 1B and 4). There was little variation in which 
users were highly ranked based on different network metrics 
(Figs. S9–S12).

A

B

C

User type

Excluded

Perceived nonexpert

Perceived expert

A
nt

i

P
ro

Coengagement network (with insets) 

A  Main antivaccine component B  Bridges

C  Main provaccine component  

Fig. 1. The coengagement network of users tweeting about COVID-19 vaccines is divided into two large communities. Users are represented as circles and 
scaled by degree centrality. Edges connect users that were retweeted at least 10 times by at least two of the same users. We highlight the two largest 
communities detected using the Infomap algorithm: antivaccine (pink, lower left) and provaccine (green, top right). Shades indicate account type: 
excluded from analyses (light); individual perceived nonexpert (medium); and perceived expert (dark). Users outside of the two largest communities are 
gray. Insets provide more detailed views of: A) the main component of the antivaccine community, B) bridges between the provaccine and antivaccine 
communities, and C) the main component of the provaccine community. Each edge is colored based on the color of one of the two users it connects, 
randomly selected. A higher-resolution image without annotations is available as Fig. S1.
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Perceived experts are more influential than other 
individuals in the antivaccine and provaccine 
communities
Using propensity score matching, we achieved excellent balance 
across matching covariates (Figs. S13–S15). Using these 
propensity-matched pairs for comparison, we calculated the aver-
age treatment effect on the treated (ATT) (i.e. average difference 
in influence between perceived experts and perceived nonexperts) 
across influence metrics based on engagements and centrality 
(Table S3). Perceived experts received more engagements (likes 
and retweets) on their posts in both communities (based on h-in-
dex metrics, which also account for the number of posts by a user 
that received many engagements) and had greater betweenness 
and degree centrality than other individual users in the provac-
cine community only (Fig. 5 and Tables S6–S8).

Perceived experts in the antivaccine community were 1.43 (95% 
CI 1.02–1.99) times more likely to receive retweets on their median 
post than would be expected if they were not perceived experts 
(Fig. 5 and Table S6). There was no significant effect of perceived 
expertise on median likes, but there was a significant effect of per-
ceived expertise on h-index for likes and retweets (Fig. 5 and 
Table S6). Perceived expertise did not significantly affect central-
ity (betweenness, degree, and eigenvector) within the antivaccine 
community on average (Fig. 5 and Table S6), although we found in 
the previous section that perceived experts were overrepresented 
in the tail of the distribution as highly central users compared to 
the full (unmatched) set of perceived nonexperts (see Section S9 
and Fig. S19).

Perceived experts in the provaccine community had a signifi-
cant positive on engagement metrics based on the h-index, but 
not metrics based on median, and additionally had a significant 
positive ATT for betweenness and degree centrality (Fig. 5 and 
Table S7). Although perceived experts in the provaccine commu-
nity tended to have a greater ATT across all influence metrics 
than those in the antivaccine community, the differences in 
ATT between groups were not statistically significant for any in-
fluence metrics (Figs. S16 and 5 and Table S8). Matching results 
were generally robust to matching specifications (Figs. S20–S22) 
and parameters defining edges in the coengagement network 
(Figs. S36 and S37). However, as explained in Sections 9 and 10, 
there were some differences in which ATTs were significant de-
pending on matching specifications and coengagement network 
parameters. There was also a significantly greater boost in median 
retweets for perceived experts in the antivaccine community 
compared to the provaccine community in coengagement net-
works constructed using different parameters (Figs. S38 and S39).

Discussion
The antivaccine community contains its own set of perceived ex-
perts. These perceived experts represent 9.8% of individual users 
within a large antivaccine community on Twitter, comprising a 
substantial group that extends beyond the handful of high-profile 
antivaccine influencers with biomedical credentials who have 
been noted anecdotally (38, 39). Although surveys have found 
broad support for COVID-19 vaccination among medical providers 

Fig. 2. Users in the antivaccine community share low-quality sources and perceived experts share academic research. Each panel compares a different 
metric of link-sharing by perceived experts and perceived nonexperts in the antivaccine (left bar in each pair, pink) and provaccine (right bar in each pair, 
green). The metrics are: A) proportion of checked links that were from low-quality sources, B) proportion of users that shared at least one low-quality 
source, C) proportion of checked links that were from academic research sources, and D) proportion of users that shared at least one academic research 
source. 95% binomial proportion CIs are indicated by black error bars. Differences between users in the antivaccine vs. provaccine community sharing 
low-quality sources were significant (P < 0.001 at both the link and user levels), and differences between perceived experts and perceived nonexperts 
sharing academic sources were significant (P < 0.001 at both the link and user levels).
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(70, 71), 28.9% of perceived experts in the two largest communities 
of the coengagement network we examined were part of the anti-
vaccine community, a proportion similar to those reported by oth-
er studies of COVID-19 vaccine attitudes expressed by medical 
professionals on Twitter (45–47). Antivaccine perceived experts 
are therefore overrepresented on Twitter compared to the share 
of actual biomedical experts who oppose COVID-19 vaccines, 
which may lead observers to underestimate the scientific consen-
sus in favor of COVID-19 vaccination, in turn reducing vaccine up-
take (70, 72, 73).

Within the antivaccine community, perceived experts may 
combine misinformation with claims that appear scientific. 
Low-quality sources in the coengagement network were over-
whelmingly shared by the antivaccine community, and perceived 
experts shared low-quality sources at similar rates compared to 
other individuals (Fig. 2A and B), suggesting that they directly con-
tribute to the widespread misinformation in the antivaccine com-
munity noted by other studies (54, 74, 75). Perceived experts, 

including those in the antivaccine community, performed expert-
ise by sharing and commenting on academic articles at much 
higher rates than other individual users (Fig. 2C and D). 
Misinformation claims containing arguments that appear scien-
tific may be particularly effective at reducing vaccine intent (6), 
suggesting that perceived experts may be responsible for some 
of the most compelling antivaccine claims.

Perceived experts may also be well-poised to spread their 
claims online, as they disproportionately occupied key network 
positions between antivaccine and provaccine communities and 
within the antivaccine community in the coengagement network 
(Figs. 3 and 4). Across various centrality metrics, perceived experts 
were overrepresented in the group of highly central users (Fig. 3), 
meaning that they reached (and had posts shared by) large and 
unique audiences. Perceived experts were half of the 10 users 
with the greatest community bridging scores, meaning that they 
were shared by audiences for users in both the antivaccine and 
provaccine communities. Within this set of five perceived experts, 

Fig. 4. Perceived experts disproportionately act as key bridges between the provaccine and antivaccine communities. The x-axis indicates the size of each 
subset (n), corresponding to the full population of 5,147 (all individual users as a basis of comparison), and the 500, 50, or 10 users with the greatest 
community bridging score. Bar height indicates the proportion of users in each population sample that are perceived experts and error bars give 95% CIs 
for the proportions. Stars above the error bars indicate whether perceived experts are significantly overrepresented within a given group of bridging users 
(**P < 0.05, **P < 0.01, ***P < 0.001).

Fig. 3. Perceived experts are overrepresented as the most central users in the provaccine and antivaccine communities. Plots are arranged in a grid where 
each row corresponds to users in one of the two largest communities: the antivaccine and provaccine communities (top in pink and bottom in green, 
respectively). Each column corresponds to a different centrality metric: betweenness (left), degree (middle), and PageRank (right). The x-axis indicates the 
size of each subset (n), corresponding to the full community, and the 500 or 50 users with the greatest centrality for each metric. Bar height indicates the 
proportion of users in each subset that are perceived experts and error bars give 95% binomial proportion CI. Stars above the error bars indicate whether 
perceived experts are significantly overrepresented within a given group of central users (*P < 0.05, **P < 0.01, ***P < 0.001).
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four made highly technical arguments in favor of vaccines and 
corrected potential misunderstandings while the fifth made dra-
matic claims about vaccine risks. Bridging users could play an im-
portant role in changing vaccine stance, although different 
communities may share distinct subsets of their tweets for sub-
stantially different reasons (40, 62). For example, antivaccine 
audiences may retweet reports of adverse events out of concern 
that vaccines are unsafe while provaccine audiences may share 
the same content to emphasize the rarity of such events.

Our hypothesis that perceived experts are, on average, more in-
fluential than other users in the antivaccine community was sup-
ported by the finding that they received more engagements (i.e. 
likes and retweets) on their vaccine-related posts than similar 
users without credentials in their profiles (based on h-index for 
likes and h-index and median for retweets) (Fig. 5). We also found 
evidence of this effect in the provaccine community. Perceived ex-
perts were significantly more central on average than a matched 
set of perceived nonexperts in the provaccine community, but 
this effect was not observed in the antivaccine community 
(Fig. 5). These findings may be explained by the observations 
that matching covariates (e.g. follower count and postfrequency) 
contribute importantly to centrality (Fig. S19) and that over-
representation of perceived experts in the set of highly central 
users (i.e. the tail of the distribution) may not be sufficient to sig-
nificantly increase the mean centrality of perceived experts com-
pared to perceived nonexperts in the antivaccine community 
(Fig. 3). There was no significant difference in the influence boost 
for perceived experts between the antivaccine and provaccine 
communities, contradicting our hypothesis that, due to source- 
message incongruence, perceived experts hold a greater advan-
tage within the antivaccine community (although we did find 
weak evidence for this hypothesis based on median retweets in al-
ternative coengagement networks; see Figs. S38 and S39). Overall, 
these findings suggests that antivaccine audiences do value ex-
pert opinion, at least when it confirms their own stances, a result 
aligned with other studies that have found that scientists and 
medical professionals are popular sources among vaccine oppo-
nents (10, 12, 41, 43, 48, 49, 63).

In sum, this works goes beyond high-profile examples of anti-
vaccine perceived experts to systematically characterize the siz-
able population of antivaccine perceived experts who had a 

significant impact on the the Twitter conversation about 
COVID-19 vaccines in April 2021. While additional work is neces-
sary to determine the robustness of these results across time, lo-
cation, and setting (including nondigital contexts), our findings 
have implications for interventions focused on education of med-
ical professionals and the general public. Educational interven-
tions that encourage trust in science could backfire if 
individuals defer to antivaccine perceived experts who share low- 
quality sources (76). Instead, education efforts should focus on 
teaching the public about the scientific process and how to evalu-
ate source credibility to counter the potentially fallacious heuris-
tic of deferring to individual perceived experts (26, 76–78). 
Although the sample of perceived experts in this study is not rep-
resentative of the broader community of experts, surveys have 
found that a nonnegligible minority of medical students and 
health professionals are vaccine hesitant and believe false claims 
about vaccine safety (71, 79, 80). Given that perceived experts are 
particularly influential in vaccine conversations (Figs. 3–5) and 
that healthcare providers with more knowledge about vaccines 
are more willing to recommend vaccination, efforts to educate 
healthcare professionals and bioscientists on vaccination and to 
overcome misinformation within this community may help to im-
prove vaccine uptake (81).

In addition to helping people evaluate vaccine information, in-
terventions may focus on improving information quality by focus-
ing on communication, social media platform design, and expert 
community self-governance. Communication efforts by experts 
recommending COVID-19 vaccines and debunking medical misin-
formation may help to correct public misunderstandings about 
expert consensus based on the overrepresentation of antivaccine 
perceived experts on social media (70). However, perceived ex-
perts already constituted one-fifth of individuals in the provaccine 
community according to our analysis (82–84), and it is not clear 
whether individual provaccine communicators will be especially 
persuasive to people who are already engaging with perceived ex-
perts who oppose vaccines. Instead, emphasizing the scientific 
consensus in favor of COVID-19 vaccines and avoiding false bal-
ance in communication may help ameliorate misconceptions 
(70, 85). Further, perceived experts and their professional organi-
zations may build trust and disseminate health information more 
effectively by developing networked communication strategies to 

Fig. 5. In the antivaccine and provaccine communities, perceived experts receive more engagements compared to other users. For each influence metric 
(y-axis, Table S3), we plot the standardized ATT as a point and corresponding 95% CI. For each metric, the value for the provaccine community is 
displayed on top (green) and the value for the antivaccine community is displayed on the bottom (pink). Positive values (to the right of the vertical line) 
indicate an influence boost for perceived experts. Instances where the effects were significantly greater than zero (P < 0.05) are indicated with an 
additional circle around the point estimate. For engagement metrics, we report the natural log of the risk ratio of a given engagement for perceived 
experts compared to perceived nonexperts.
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rapidly, openly, and factually address false claims that gain trac-
tion while clearly explaining areas of uncertainty and directly ad-
dressing legitimate safety concerns (as several of the most central 
perceived experts in the provaccine community did during the 
study period, see Fig. S3) (2, 86). User-provided expertise cues 
were sufficient to garner greater engagement on Twitter in 
vaccine-related discussions, suggesting that individuals could 
misrepresent their own credentials to more effectively spread 
antivaccine misinformation (Fig. 5). Platforms may counter poten-
tial deception by establishing mechanisms to verify academic and 
professional credentials and creating signals within profiles to 
identify authorities on health-related topics. These measures 
were implemented on Twitter in the early months of the 
COVID-19 pandemic but have since been abandoned. Finally, 
this work illustrates the importance of self-regulation within ex-
pert communities, particularly as medical boards clarify that 
health professionals who spread vaccine misinformation may 
face disciplinary consequences (87).

Limitations and extensions
This study relies on proxies for tweet content and user activity 
that may miss important variation and nuance in stance. 
Breaking the network into provaccine and antivaccine communi-
ties is common across studies of social media networks (54, 55, 60, 
74), and stance was generally consistent across popular tweets in 
either community (Fig. S3), but there were several notable excep-
tions. Positive tweets from users in the antivaccine community 
tended to cite vaccine efficacy as an argument against mandating 
vaccines, while negative tweets from users in the provaccine com-
munity (particularly those by perceived experts) praised vaccine 
regulators for responding to safety signals. Further, sharing a par-
ticular misinformation or academic link may not constitute en-
dorsement, particularly in fact-checking contexts. Although 
academic sources were shared in the antivaccine community, sci-
entific studies may be misrepresented by these users (10, 51, 54) or 
include articles that have been retracted (40, 50). Future work may 
examine which academic links were shared within the antivac-
cine community and how these sources were interpreted. More 
detailed content analysis may reveal important differences be-
tween the communities beyond attitudes toward vaccine (e.g. at-
titudes toward nonpharmaceutical interventions and perceptions 
of severity of COVID-19 infection), heterogeneity in vaccine opin-
ion within groups, and specific rhetorical strategies utilized by 
perceived experts in either group (42, 88, 89). We were unable to 
assess how many users were exposed to a given tweet, instead 
relying on engagements as an indicator of tweet popularity, which 
may lead to us to underestimate the true reach of content. We also 
could not ascertain how exposure to vaccine-related information 
in this study influenced health decision-making and behavior, 
questions that could be directly evaluated in an experimental 
setting (69). We focused on perceived experts rather than self- 
proclaimed experts (i.e. experts who intend to be perceived as 
experts), acknowledging that perceived experts may not realize 
that they are being viewed as biomedical authorities or wish to 
be seen as such and that evaluating user intentionality is beyond 
the scope of this study.

Our analysis is limited to a subset of individuals discussing 
COVID-19 vaccines. This study is focused on a single month, based 
on events in the United States and English keywords, constrained 
to a single coengagement network on Twitter, and limited to 
conversations that used specific keywords related to COVID-19 
vaccination. Initial vaccination capacity, trust in experts, and 

vaccine uptake vary considerably between countries (8), and our 
own analysis found considerable geographic clustering across 
the coengagement network (Fig. S5). Further work may examine 
how the role of perceived experts in conversations about vaccin-
ation differed between regions and across different time periods 
(including prior to the COVID-19 pandemic and after the emer-
gence of variants of concern with high breakthrough infection 
rates). Although we excluded the small set of individuals who 
added or removed signals of expertise from their profile during 
the study period, examining a longer time period to expand this 
set of users could enable further analysis of how user behavior 
and influence changes depending on perceived expertise (90). 
Twitter users are not representative of the general population 
(91), and patterns in vaccine conversations on social media do 
not necessarily reflect actual vaccination trends (13, 15), although 
vaccine hesitancy may correlate with Twitter activity (7). By filter-
ing the set of accounts considered in this analysis to construct the 
coengagement network, our findings are further limited to a sub-
set of users who receive repeated engagement from other ac-
counts. Keyword-based methods to collect posts about 
vaccination may introduce additional biases into the dataset by 
excluding slang, misspellings, and efforts to evade moderation 
by using codewords (92). The generalizability of these results 
should be assessed on different social media platforms (4, 9, 13). 
The role of experts, particularly those who take counter- 
consensus positions, is relevant across other scientific topics in-
cluding climate change, tobacco, and AIDS etiology and treatment 
(93, 94). These methods could be applied to compare the role of 
perceived experts in conversations about different scientific and 
nonscientific topics (e.g. politics and entertainment) to test 
whether domain specific credentials are necessary to be perceived 
as an expert and compare the effects of perceived expertise rele-
vant to different conversations (e.g. whether politicians speaking 
on political matters receive an influence boost comparable to that 
of medical professionals and scientists discussing COVID-19 
vaccines).

Conclusion
By examining a coengagement network based on Twitter posts in 
April 2021, we found that the set of antivaccine perceived experts 
extends far beyond prominent examples noted by others previ-
ously (38, 39), suggesting that they should be addressed as a 
unique and sizable group that blends misinformation with argu-
ments that appear scientific. We also found evidence that per-
ceived experts are more influential than other individuals in the 
antivaccine community, as they disproportionately occupied cen-
tral network positions where they could reach large audiences 
and were significantly more likely to receive engagements on their 
vaccine-related posts compared to perceived nonexperts (meas-
ured by h-index across posts). Perceived experts are not only 
some of the most effective voices speaking out against vaccine 
misinformation; they may be some of its most persuasive sources.

Methods
The Institutional Review Board of Washington University deter-
mined that this study (STUDY00017030) was exempt.

Data collection
Our analysis was conducted on a subset of collections of public 
tweets related to vaccines and the COVID-19 pandemic, retrieved 
and stored by the University of Washington’s Center for an 

8 | PNAS Nexus, 2024, Vol. 3, No. 2

D
ow

nloaded from
 https://academ

ic.oup.com
/pnasnexus/article/3/2/pgae007/7601415 by guest on 17 February 2024

http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgae007#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgae007#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgae007#supplementary-data


Informed Public in real time as they were posted. Tweets that were 
later deleted, and public tweets from accounts that were sus-
pended or became private are included in the dataset.

We constrained our search period to April 2021 (see Methods 
S1.1 for further context on the study period). To focus our analysis 
on content related to COVID-19 vaccines, we selected tweets (i.e. 
posts) within the collections that mentioned the following key-
words related to COVID-19 vaccines: vacc*, vaxx, jab, shot, immu-
niz*, dose, mrna, pfizer, j&j, jnj, j & j, j n j, johnson and johnson, 
johnson & johnson, janssen, moderna (where asterisk (*) indicates 
a wildcard, meaning a set of alphabetical characters of any 
length). Although this protocol focuses on vaccine administration 
in the United States and English language content, tweet selection 
was not constrained to a specific geographic region. In total, we re-
trieved 4,276,842 unique tweets including quote tweets (when an-
other post is shared with commentary) and replies (a direct 
response to another user’s tweet) from April. A total of 5,448,314 
unique users participated in the Twitter conversation about 
COVID-19 vaccines during the study period by either posting ori-
ginal content or retweeting (i.e. sharing) another user’s tweet on 
the topic. We additionally retrieved retweets, quote tweets, and 
replies linked to tweets in the April collection that were posted 
within 28 days of the original tweet (extending the dataset to 
May 28) to compare the number of likes and retweets each tweet 
in the April study period received across a window of the same 
length (4 weeks).

We randomly generated a unique numeric identifier for each 
user to protect user privacy (particularly for users who are not 
public figures) while allowing our findings to be reproduced 
(Methods S1.2).

Coengagement network construction
We examined the activity of influential users with shared audien-
ces by generating a coengagement network. First, we constructed 
a directed graph where each edge connects a user to another user 
whom they have retweeted at least 10 times. Next, we used a 
Docker container developed by Beers et al. (62) to transform the 
network into an undirected graph. Edges link accounts that were 
retweeted at least 10 times by at least two of the same users. 
The resulting graph therefore filters users to those that received 
some amount of repeated engagement from more than one ac-
count rather than those that produced a single viral tweet. 
There are several advantages to using a coengagement approach. 
Networks where ties are based on who follows or engages with 
whom directly may be vulnerable to spam and bot activity (i.e. es-
pecially high engagement) and underestimate the importance of 
popular users who do not follow or engage with many other users. 
Instead, coengagement network structure reflects how a user’s 
content is received. Finally, since we only consider retweets on 
tweets containing vaccination keywords, this approach allows 
us to focus on connections between users that are particular to 
their role in the conversation about vaccines. We repeated the 
analysis on coengagement networks constructed using alterna-
tive edge criteria (at least five retweets by at least five of the 
same individuals and at least two retweets by at least 10 of the 
same individuals) to evaluate the robustness of our findings to 
coengagmeent network settings (Section S10 and Figs. S23–S39).

We used the Infomap hierarchical clustering algorithm imple-
mented at mapequation.org to detect communities within the 
coengagement network. Infomap balances the detection of poten-
tial substructures (i.e. subcommunities within communities) 
against concisely describing a random walker’s movements 

through the network to determine the total number of levels to 
use (95, 96). The subcommunities detected using Infomap corres-
pond well to communities detected using the Louvain method, an-
other community detection algorithm (Section S5, Figs. S7 and S8, 
and Table S4). Coengagement networks were visualized using the 
open-source software package Gephi with the ForceAtlas2 layout 
algorithm (97, 98).

Tagging profiles
We first noted whether a profile indicated that the user primarily 
tweeted in a language other than English. Because we were unable 
to assess non-English expertise signals and tweets associated with 
these users, who may also have reached a substantially different 
audience compared to English-language accounts, we excluded 
non-English accounts from our analysis. We also noted accounts 
that appeared not to represent individuals (e.g. accounts for me-
dia groups, nonprofit organizations, governmental agencies, and 
bot accounts). Non-English and nonindividual accounts (2,549 ac-
counts in total) remained in the network for visualizations and 
calculations related to network centrality but were excluded 
from analyses focused on comparing individuals with and with-
out signals of expertise in their profiles.

For the remaining individual profiles, we noted whether there 
were signals of expertise in the account username or display 
name (which are listed with tweets in a user’s feed) or the account 
description (which is only visible if a user mouses over the au-
thor’s tweet or directly visits the account) (Fig. S2). Signals of ex-
pertise included academic prefixes (e.g. Dr or Professor), suffixes 
(e.g. MD, MPH, RN, PhD), and professional information (e.g. scien-
tist, retired nurse). We limited our definition of perceived expert-
ise to include training or professional experience in a potentially 
relevant field but excluded individuals who expressed an interest 
in a related topic without providing qualifications (e.g. “virology is 
the coolest”). We included anonymous accounts and ones that 
may have been parodies (e.g. “Dr Evil” and “The Mad Scientist”) 
since we expect that users evaluate profiles based on heuristics 
and without investigating the veracity of information provided 
(26). We assumed that medical and wellness professionals, includ-
ing practitioners of alternative medicine, may broadly be perceived 
as experts regardless of specialty (28). To focus on biomedical ex-
pertise, we did not code users from other fields as perceived experts 
(e.g. science journalists, disability rights advocates, and govern-
mental officials without biomedical backgrounds), acknowledging 
that these sources may provide trusted and knowledgeable per-
spectives relevant to health decision-making.

Users that indicated expertise in any part of their profile 
(names, description, or both) at any point in time were tagged as 
perceived experts based on experimental evidence that users 
with biomedical expertise signals in their profiles are perceived 
to have greater expertise on COVID-19 vaccines (31). Users who 
may be perceived as biomedical experts based on their name 
who clarify that they are not biomedical experts in their descrip-
tion (e.g. name: Dr Henry Jekyll, description: PhD in 19th century 
literature) were still included as perceived experts because users 
viewing their tweets in the main feed display would not see the de-
scription and may assume that they have a medical doctorate or 
doctoral degree in a biomedical field (as observed in Ref. (31)). 
This classification underscores the difference between perceived 
experts who may or may not intend to be seen as biomedical ex-
perts but are nevertheless viewed as such due to platform design 
and self-proclaimed experts who deliberately claim expertise. Users 
that changed their profiles over the course of the study in a 
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manner that changed whether they might be perceived as an ex-
pert were excluded from the following analyses. Additional exam-
ples of perceived expert and perceived nonexpert profiles based 
on those observed in this coengagement network are provided 
in Ref. (31). One author tagged all accounts in the coengagement 
network and two authors tagged a sample of 500 accounts to 
assess interrater reliability.

Determining community stance
To understand the stance of individuals in the two largest com-
munities, we analyzed 392 popular tweets by central individuals 
in both communities (Methods S1.3). For each tweet, three coders 
assessed stance toward COVID-19 vaccines as positive, negative, 
or neutral (Methods 1.4). Negative stances toward COVID-19 
vaccines were prevalent in tweets from one community, which 
we refer to as the antivaccine community (Fig. S3). The other 
community, in which tweets mainly expressed positive stances, 
was the provaccine community that served as a basis of 
comparison.

Academic and low-quality link-sharing
We expanded shortened URLs in tweets by users in the antivac-
cine and provaccine communities using the RCurl package in R 
(99). In some cases, this process timed out or links connected to 
other content shared on Twitter; such links were excluded from 
the following analysis. Across community and perceived 
expertise, there was minimal risk of differences in link-sharing 
frequency leading to bias in the following analyses (Fig. S4). We 
checked the remaining 79,942 links, first determining whether 
the domain name was rated “low” or “very-low” quality by Media 
Bias/Fact Check according to the Iffy Index of Unreliable Sources 
(100, 101), a common proxy for misinformation sharing (18, 55). 
To assess sharing of academic research, we checked links to re-
search publications (102) and preprint servers used in biomedical 
and medical sciences (103). For perceived experts and perceived 
nonexperts in the two large communities, we calculated: (i) the 
proportion of assessed links from low-quality or academic re-
search sources and (ii) the proportion of total users that shared 
at least one link from a low-quality or academic research source 
in their original posts during April 2021. For each metric, we calcu-
lated the binomial proportion 95% CI as p̂ ± 1.96 ×

�������
p̂(1− p̂)

n

􏽱

, where p̂ 
is the observed proportion and n is the total links or users in a giv-
en category. To compare proportions for different categories of 
users, we conducted two proportion one-tailed Z-tests with 
Yates’ continuity correction to account for the small number of 
links from low-quality sources shared by the provaccine commu-
nity. Next, we compared sharing of news sources with partisan 
biases (right-wing or left-wing), as determined by Media Bias/ 
Fact Check using similar methods (101).

Network centrality and bridging metrics
We calculated degree, betweenness, and Pagerank centrality to 
describe network position using the igraph package in R (104). 
Degree centrality is the number of edges a user has linking it to 
other users, and users with greater degree centrality share an 
audience with many other users in the coengagement network 
(i.e. were retweeted several times by users who also repeatedly re-
tweeted other users). Betweenness centrality is the number of 
times a given user appears along the shortest path between two 
other users in the network, meaning that it selects for users who 
share audiences with sets of users who otherwise do not have 
much overlap in the people who retweet them. PageRank 

centrality recursively assigns users a value based on whether 
they have many connections to other users with high PageRank 
centrality, selecting users who share audiences with many users 
whose audiences overlap with those of many others in the coen-
gagement network. We additionally detected users with audien-
ces spanning the antivaccine and provaccine communities using 
a community bridging score calculated as the minimum number 
of edges that a user has linking it to either of the two communities. 
A description of centrality metrics and their interpretation in the 
coengagement context is provided in Table S1.

We tested whether perceived experts were overrepresented 
within the group of users ranked highly by each metric by calcu-
lating the proportion of perceived experts in the top n users ranked 
by a given metric (where n varies between 500 and 50 for all met-
rics and 10 for bridging score). Several perceived experts and per-
ceived nonexperts had the same bridging scores, leading to ties for 
ranking in the top 500 and 50 bridges. In these cases, we randomly 
drew 1,000 samples from the tied users without replacement to 
complete the set of top bridges and calculated the mean propor-
tion of perceived experts across all samples. To calculate the 
95% CI given ties, we subtracted and added the margin of error de-
scribed above to the 0.025th and 97.5th percentile proportion val-
ues across the 1,000 samples, respectively. For the remaining 
metrics and subsets, we calculated the binomial proportion 95% 
CI as in the previous section except when examining the 10 top 
bridges, in which case we calculated the Wilson score interval to 
account for the small sample size.

To test whether perceived experts were significantly overrepre-
sented in each sample of highly ranked individuals, we conducted 
two proportion Z-tests with the alternative hypothesis that per-
ceived experts were a significantly greater proportion of the top 
n individuals than individuals in the complement (i.e. individuals 
who were not among the top n individuals ranked by a given met-
ric). When considering the top 10 bridges, we instead used a 
Fischer’s exact t test to account for the small sample size.

Matching to assess relative influence of perceived 
experts
This portion of the analysis was pre-registered on OSF Registries 
prior to hypothesis testing (https://osf.io/6u3rn). We assessed 
how perceived expertise affected influence using propensity score 
matching, a technique to select a sample of perceived nonexperts 
with a similar covariate distribution to perceived exerts in the da-
taset so that the average influence of perceived experts and per-
ceived nonexperts may be compared while adjusting for 
potential confounders (105) (Figs. S17 and S18). Propensity score 
matching was performed using the MatchIt package in R (106).

We matched on the following covariates: natural logged follow-
er count at the beginning of April 2021, natural logged count of on- 
topic posts during the study period (i.e. posts included in our data 
set because they contained a COVID-19 vaccine keyword), ac-
count creation date, whether the account was verified, percent 
of on-topic posts containing links, percent of on-topic tweets 
that were retweets (vs. original posts), posting time of day, uni-
formity of posting date across the study period, and subcommun-
ity assignment (Table S2, see Fig. S17 for frequency distributions 
of matching covariates). We used logistic regression to compute 
propensity score as the predicted probability that each user is a 
perceived expert given their covariates. Based on propensity 
scores, each perceived expert was matched with replacement to 
their three nearest neighbor perceived nonexperts. To test the first 
two hypotheses about influence within the antivaccine and 

10 | PNAS Nexus, 2024, Vol. 3, No. 2

D
ow

nloaded from
 https://academ

ic.oup.com
/pnasnexus/article/3/2/pgae007/7601415 by guest on 17 February 2024

http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgae007#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgae007#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgae007#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgae007#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgae007#supplementary-data
https://osf.io/6u3rn
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgae007#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgae007#supplementary-data


provaccine communities, respectively, we included only users in 
either community. To test the third hypothesis comparing the in-
fluence of perceived experts in the antivaccine vs. provaccine 
community, we calculated the interaction of perceived expertise 
and community. Sample sizes for all analyses are provided in 
Table S5. The outcome variables for influence were: PageRank 
centrality, degree centrality, betweenness centrality, median likes 
across posts, median retweets across posts, h-index of likes across 
posts, and h-index of retweets across posts (Table S3). The h-index 
is the maximum number h such that the user wrote at least h 
tweets (including replies and quote tweets) that received at least 
h likes or retweets. We calculated engagements (likes and re-
tweets) for each tweet as the maximum number observed for 
that tweet in our collection within 28 days of when it was posted. 
Importantly, we only retrieved like counts for a given tweet when 
another user engaged with the tweet through a quote tweet or 
retweet.

We then estimated the effect of perceived expertise on influ-
ence by calculating the ATT, which corresponds to the difference 
in expected influence ((Y(T)) with and without perceived expertise 
given that a user is a perceived expert (T = 1) with covariates 
drawn from the distributions for the matched users (X ):

ATT = E[Y(1) − Y(0) ∣ T = 1, X].

Since the engagement metrics were overdispersed counts (me-
dian likes, median retweets, h-index likes, and h-index retweets), 
we used a quasipoisson regression to estimate ATT as the logged 
risk ratio of engagements for perceived experts compared to per-
ceived nonexperts. ATT was estimated by g-computation using 
the marginal effects package (107). Using the delta method, 
cluster-robust standard error was calculated for each metric, 
with clusters corresponding to sets of perceived nonexperts and 
perceived experts who were matched to each other.

We report standardized ATT in Fig. 5, calculated by dividing the 
mean difference for a given metric by the cluster-robust standard 
error, and analytic 95% CIs. We additionally tested the robustness 
of our results to different matching parameters and covariates 
(Figs. S20–S22).
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