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ABSTRACT
Each year, roughly 30% of first-year students at US bac-
calaureate institutions do not return for their second year
and billions of dollars are spent educating these students.
Yet, little quantitative research has analyzed the causes and
possible remedies for student attrition. What’s more, most
of the previous attempts to model attrition at traditional
campuses using machine learning have focused on small, ho-
mogeneous groups of students. In this work, we model stu-
dent attrition using a dataset that is composed almost exclu-
sively of information routinely collected for record-keeping
at a large, public US university. By examining the entirety
of the university’s student body and not a subset thereof,
we use one of the largest known datasets for examining at-
trition at a public US university (N = 66,060). Our results
show that students’ second year re-enrollment and eventual
graduation can be accurately predicted based on a single
year of data (AUROCs = 0.887 and 0.811, respectively).
We find that demographic data (such as race, gender, etc.)
and pre-admission data (such as high school academics, en-
trance exam scores, etc.) - upon which most admissions
processes are predicated - are not nearly as useful as early
college performance/transcript data for these predictions.
These results highlight the potential for data mining to im-
pact student retention and success at traditional campuses.

1. INTRODUCTION
Student attrition has long been a topic of great interest in
higher education research, with government reports on at-
trition dating back over 100 years [31]. This interest stems
from the fact that students who do not graduate are a lost in-
vestment on many fronts. For higher education institutions,
limiting attrition is central to their financial sustainability as
they devote scarce resources towards classes and services for
non-completing students [17]. In particular, it is estimated
that 30% of United States (US) first-year students do not re-
turn for their second year of post-secondary education with

US taxpayers spending nearly $2 billion annually on educat-
ing non-returning first-year students alone [28]. Institutions
are also concerned with attrition rates because they are cen-
tral to estimates of institutional effectiveness, thereby af-
fecting funding opportunities and government support [14].
Highlighting the impact of attrition at the institutional level
also says nothing of its impact on students, who devote time,
effort, and finances towards unfinished educational pursuits.
Leaving college drastically alters career trajectories for stu-
dents and those without college degrees face continually de-
clining job growth and worsening job prospects [9].

In light of this, understanding motivations for students to
drop out and possible remedies thereof is of great importance
[12]. Empirical evidence to build student attrition theory
has traditionally focused on survey-based research [30, 8].
However, survey instruments are often costly to implement,
time-consuming for data collection, and produce results that
are not always generalizable across institutions due to vastly
different student profiles [34, 7, 8]. Institutional data that is
routinely collected at colleges and universities (e.g. student
application and transcript data) can provide an alternative
data source and a way to supplement survey-based measures
[8]. Leveraging data sources already in existence can add
a means to more efficiently examine the student attrition
problem and help institutions remedy the issue of attrition.
One field that is primed to take advantage of this institu-
tional data is educational data mining (EDM) and its focus
on data-intensive techniques in educational settings [26, 4].

EDM is an emerging field with much of its research on at-
trition centered on massive online open courses (MOOCs)
and other online environments (e.g. [35, 13]). Studying at-
trition in MOOCs and other online settings lends itself to
expansive data collection opportunities and a detailed mon-
itoring of students [23]. This limits the extent to which this
work can be generalized to more traditional campus set-
tings (i.e. campuses where learning is primarily on-campus,
in-classroom). Meanwhile, EDM-centric work on predicting
attrition at traditional campuses has been scarce and usu-
ally limited to small, homogeneous subsets of students rather
than the entirety of a college student population. Addition-
ally, the focus when predicting attrition is usually on how
well it can be predicted and less so on what type of data is
best for these predictions.

In this work, we predict the attrition of a large number of un-



dergraduate students (N = 66,060) using only their first year
of academic data. The students we examine are not from a
single department or major within a university. Rather, they
span the entirety of a student body, thereby comprising a
dataset with heterogeneous aspirations, backgrounds, and
goals. In addition, we rely almost entirely on data that is
routinely collected at institutions of higher education. With
this data, we seek to answer two questions: to what ex-
tent can undergraduate student attrition be predicted using
a limited amount of data from registrar records and what
types of data from registrar records are most useful in pre-
dicting attrition. The first of these has been explored in the
past while using smaller and/or homogeneous student pop-
ulations; the second has not been systematically examined
in the literature to our knowledge.

To answer the above questions, we mine the institutional
data records at a large, public university in the US and
engineer features for predictions. We then create numer-
ous machine learning models using the engineered features
and compare the performance of these models to each other.
Then, we create separate machine learning models using
only groups of features and not the entirety of the feature
space to compare the predictive power of different subsets of
institutional data. This work is an extension of our previous
work on modeling student attrition using a limited amount
of data [3] but where we previously focused on using the first
term’s data in generating features for prediction, we use the
first year’s in this work. We also extend our previous work
to build additional machine learning models, predict attri-
tion as defined according to two different definitions (overall
graduation and re-enrollment after students’ first year), and
examine the types of feature subsets most useful in predic-
tions. In so doing, we present two key findings, both of
which have many implications for administrative policy in
higher education:

• We demonstrate that the graduation and second-year re-
enrollment of students can be predicted using data that is
routinely gathered at institutions of higher education.

• We show that demographic and pre-entry features have
less predictive power than data on student academics.

2. RELATED WORK
There are many examples of predicting attrition at tradi-
tional campuses. Most of these focus on small, homogeneous
subsets of students. Moseley predicted the graduation of
528 nursing students using rule induction methods, obtain-
ing high accuracies but not controlling for the number of
terms/semesters examined for each student [21]. Dekker et
al looked at only the first semester grades of 648 students
in the Electrical Engineering department at the Eindhoven
University of Technology and were able to predict dropout
with 75-80% accuracy [10]. Kovačić used tree-based meth-
ods on a similarly-sized dataset of 453 students at the Open
Polytechnic of New Zealand, finding ethnicity and students’
course taking patterns to be highly useful in prediction [18].
Bayer et al. looked at 775 applied informatics students at
the Czech Republic’s Masaryk University across three years
[5]. Without limiting the amount of information available
for each student, they found that including features related
to students’ social behavior can boost prediction accuracy by
over 10% for some models. These and similar studies, how-

ever, focus on relatively small (e.g. N < 2,000) subgroups of
students with similar academic pursuits/foci. In addition,
there is little consistency with respect to the timeframes
across which data is examined for each student. Other
approaches to predict attrition at traditional campuses in-
clude early alert systems, which are often labor intensive and
poorly funded [29]. These alert systems have been shown to
positively benefit students (e.g. [16]), but usually rely on
data gathered in the midst of a course or an academic term
(e.g. [27, 15]), which may not always be feasable.

The work we present more closely relates to a subset of lit-
erature looking at student attrition in the context of the
heterogeneity of students across an entire campus and not
just a subset thereof. Our work also deals with much larger
student populations than those described above and, in this
sense, it more closely resembles a more recent body of litera-
ture. Delen used 8 years of institutional data on over 25,000
students at a large, public US university, predicting whether
the students would return for their second year [11]. How-
ever, due to class imbalances, Delen re-sampled the majority
class and ultimately used only 6,454 students for predictions.
Ram et al. used data on about 6,500 freshmen at a large,
public US university to predict whether students would drop
out after their first semester, and for those that did not,
whether they will drop out after an additional term [25].
Ram et al. supplemented data from institutional databases
with student smart card transactions to infer social inte-
gration. More recently, Nagy and Molontay predicted the
dropout of 15,825 students from the Budapest University
of Technology and Economics using only their information
prior to college entry with some success [22].

There are a few ways in which our work contributes to this
body of literature. Firstly, we use a much larger dataset
than has been previously examined specifically for attrition
(66,060 students). We examine the entirety of a large uni-
versity’s student body and we do not limit the extent of het-
erogeneity of the students in the dataset. Additionally, we
also address the question of what types of features are most
useful in predicting student attrition. In particular, previous
works have generally used all available data sources concur-
rently in determining which students will attrite. In this
work, we explore what types of routinely-collected institu-
tional data fare best when predicting attrition by comparing
performance using different data subsets in isolation. Fi-
nally, we concurrently compare predictions for two different
definitions of “attrition,” highlighting the degree to which
operationalizing the term can impact results.

3. METHODS
We describe the methods for this work by first detailing the
data used in the project. We then give relevant operational
definitions with respect to how we define attrition. There-
after, we discuss the data subsets used in the predictions
and the features generated. Lastly, we describe the setup of
the machine learning experiments.

3.1 Data Description
We collected psuedonomyized, de-identified data from the
University of Washington (the University) data stewards in
2017. The University is a traditional campus setting where a
vast majority of instruction is in person and face-to-face. No



personally identifiable information was collected for the stu-
dents; instead, students were referenced using unique iden-
tifying keys. Table 1 shows the tables that were pulled from
the registrar databases. In general, the data included in-
formation on students’ demographics, complete transcript
records at the University, and information from applications
to the University. We did not have any information on stu-
dents’ financial aid status or economic status other than that
which was derived from their ZIP code, as described below.
Socioeconomic factors can play a large role in the student
attrition process [6], however, we did not have access to stu-
dent finances for use in this work. We also did not have
access to any exit surveys from students who had either left
the University or had graduated.

Table 1: Data pulled from registrar databases

Table Description

Application Data Information from student applica-
tions to the University including
high school coursework

Guardian Data Information on student guardians
as pulled from student applications
to the University

Demographic Data Information on student demograph-
ics including date of birth, race,
ethnicity, gender, etc.

Major Data Information on majors declared
by students on a term-by-term
(quarter-by-quarter) basis

Test Score Data Information on student standard-
ized test results

Transcript Data Information on student coursework
and grades on a term-by-term
(quarter-by-quarter) basis

We restricted data to high school graduates who first en-
rolled at the University as matriculated, baccalaureate-
degree-seeking undergraduate students between 1998 and
2010 without previously attending another post-secondary
institution full-time. These students are henceforth referred
to as“freshmen.” The dataset included students who were in
a college in high school program but excluded those who at-
tended junior/community college full-time after high school
and then transferred to the University. Because the data was
pulled in 2017, we used the year 2010 as a cutoff to allow for
six full years of visibility on student academics at the Univer-
sity before labelling a student as a “non-completion,” as de-
fined in Section 3.2. In total, the dataset consisted of 66,060
unique freshmen entrants. We then further limited the data
for each student to information through one calendar year
from each student’s first enrollment at the University. This
data was limited to one calendar year for all students, re-
gardless of the number of courses they took/passed, their
grades, or their backgrounds.

After joining tables of interest using the unique student iden-
tifiers, we created features for the prediction experiments by
either pulling them directly from the raw data or engineer-
ing them for each student. The features were grouped in 7

groupings, which are described in Section 3.3; a comprehen-
sive list of features and descriptions thereof is available upon
request but was not provided in this writing in the interest
of space. In total, there were 1,405 features and all features
were generated for each student without exception.

3.2 Definitions
Ambiguity with respect to operational definitions of dropout
in literature on student attrition can make it difficult to com-
pare results across studies [24, 33]. There are numerous ways
in which attrition has been defined in existing literature, be
it students dropping out from a particular course (e.g. [21]),
re-enrolling after their first term (e.g. [1]), re-enrolling after
their first year (e.g. [11]), graduating on time (e.g. [3]), or
reaching some other relevant milestone (e.g. [10]). In this
work, we defined attrition in two ways and analyze both. We
examined attrition from students’ first year to their second
(“re-enrollment” and “non-re-enrollment”) as well as looking
at whether a student graduated on time (“graduate” and
“non-completion”). We do not examine attrition on a term-
by-term basis because of the relatively few students who
leave the University after only a single term, as discussed in
Section 4.1. We operationally defined non-completion and
re-enrollment as described below.

3.2.1 Non-Completion
We defined “non-completion” as any freshman student who
did not graduate with a baccalaureate degree from the Uni-
versity within 6 calendar years of first entry to the Univer-
sity. We defined a “graduate” as a freshman who graduated
from the University with a baccalaureate degree within 6 cal-
endar years of first enrollment. The University uses a quar-
ter term system and we used the span of four consecutive
academic quarters as a measure of one calendar year. Six
calendar years for graduation was thus the span of 24 consec-
utive academic quarters. This definition of non-completion
only accounted for students’ first baccalaureate degree and
did not take into account double-majors or double degrees.
For example, if a student was simultaneously pursuing two
baccalaureate degrees but only graduated with one in five
years, they would be a graduate; alternatively, if the stu-
dent had graduated with both degrees but during their sev-
enth year, they would be considered a non-completion. Be-
cause we focused on registrar records from a single institu-
tion, defining non-completion in this manner does not take
into account students’ academic progression after leaving the
University. This is because we only had access to registrar
records from a single institution and did not track students
across multiple institutions - they could have very well trans-
ferred from the University and graduated in good standing.

We accounted for students who took part in a college in high
school program by converting their transferred credit total
to a count of academic quarters completed while assuming
typical full-time enrollment at the University. For example,
if a student completed 30 credits in a college in high school
program, we converted this credit total to a count of terms
completed at the University (in this case, 2, as students typ-
ically take 15 credits per term). We rounded the result from
this conversion where appropriate. We then deducted this
number when determining whether the student had gradu-
ated within an appropriate amount of time.



3.2.2 Re-Enrollment
We defined “re-enrollment” as a student who completed at
least one additional course within one calendar year of the
end of their first calendar year at the University (i.e. within
4 academic quarters from the end of their first year). “Non-
re-enrollments” were students who were not re-enrollments.
In this work, the definitions of graduation and re-enrollment
were treated mutually exclusive in that all graduates were
not necessarily re-enrollments. It should be noted that the
University requires students who do not enroll for two con-
secutive terms without an excused leave to be re-admitted
at the discretion of the University.

3.3 Feature Groupings
For every student, we engineered the subsets of features
that are described below. For all student grades, we cal-
culated a grade percentile and a z-score by comparing each
students’ grades to the grades of all undergraduate students
who had taken the same course at the same time. References
to grades include the student’s GPA (on a 4.0 scale), their
percentile score (from 0-100), and their z-score for courses
(representing the number of standard deviations from the
mean, assuming a normal grade distribution). References
to “performance” for the feature groupings include grades
and credits earned, at the least. In some cases, references to
performance may also include the number of graded credits
earned (versus courses taken pass-fail) and the number of
credits attempted. A brief description of each of the feature
subsets is provided in Table 2.

Table 2: Data subsets used in predictions

Subset Description

Base Data Year and quarter of University entry
(included with every other data subset)

Demographic
Data

Non-academic data prior to entry to the
University, including demographics

Department-
level Data

Measures of performance aggregated by
course department

First-Year Sum-
mary Data

Aggregated measures of academic per-
formance during first year

Grouped Course
Data

Measures of performance aggregated by
course number and STEM gatekeepers

Major Data Counts of majors declared on a term-
by-term basis

Pre-Entry Data Academic data prior to entry to the Uni-
versity.

3.3.1 Base Data
Base data consisted of only three features and was included
in the feature space when making predictions using every
other data subset described. The base data included stu-
dents’ calendar year of entry to the University, their quarter
of entry to the university (i.e. which of the four academic
quarters was a student’s first; ranging from 1 to 4, with 1, 2,
3, and 4 corresponding to winter, spring, summer, and au-
tumn academic quarters, respectively), and a quarter-year
variable which consisted of students’ year of entry multiplied
by 4 and added to the quarter of entry to create a relative

time scale. These features were included to account for any
time-related variation in graduation rates.

3.3.2 Demographic Data
Demographic data consisted of student’s non-academic in-
formation prior to entry to the University. This included,
but was not limited to, students’ gender, race, ethnicity, age
at college enrollment, veteran status, and student athlete
status. We also included information from students’ appli-
cation to the University, such as information on the stu-
dents’ high schools (excluding high school grades), parents’
educational attainment, and students’ ZIP (postal) code,
which was either pulled from their high school information
or, when unavailable, from their university application. We
joined students’ ZIP codes with 2015 US census data1 to
find the average income and educational attainment in each
ZIP code. We also included the distance from the Univer-
sity to each student’s home ZIP code. Features derived from
ZIP codes were the only features from sources external to
the University’s registrar databases.

3.3.3 Department-level Data
Department-level data consisted of student performance in
course offerings grouped by course prefix. For example, this
included performance in all BIOL (biology) courses grouped
together, performance in all HIST (history) courses grouped
together, etc. We excluded course prefixes wherein at least
10 students from the dataset did not take a course. In all,
this included 200 unique course prefixes and 1000 features,
with GPA, percentile grade, z-score, credits earned, and
graded credits earned calculated for each prefix. We used
department-level data instead of individual course data af-
ter preliminary modeling using individual courses did not
yield strong results. The expansive feature space when en-
gineering features across individual courses also significantly
increased the requisite computational power/time for mod-
eling and we decided against pursuing this further.

3.3.4 First-Year Summary Data
First-year summary data consisted of aggregate measures of
students’ first year at the University. This included, among
other things, students’ course performance, credits taken,
number of courses failed, number of quarters enrolled, and
enrollment in a freshman seminar courses. The first-year
summary data also included aggregate measures of students’
performance in their first, second, third, and fourth quarters
as well as student performance in the last academic quarter
for which they were enrolled during their first year (regard-
less of which quarter it was). We also included differences
between students’ performance in successive quarters.

3.3.5 Grouped Course Data
Grouped course data consisted of student course perfor-
mance grouped either by course number or by performance
in “STEM gatekeepers.” To group courses by course num-
ber, we aggregated performance across all courses that were
numbered below 100, from 100-199, from 200-299, from 300-
399, and 400+. The course numbering generally reflected
whether the course was designed to be taken by lowerclass-
men or upperclassmen and, in some cases, also indicated

1From the US Census Bureau’s American Fact Finder



during which year students typically took the course. STEM
gatekeepers refer to introductory science, technology, engi-
neering, and math (STEM) courses which often function as
pre-requisites for STEM majors and degrees. These gate-
keeper courses tend to be highly competitive and perfor-
mance in these courses is a key determinant of whether a
student will be accepted into any of the highly competitive
STEM majors. We grouped the performance in STEM gate-
keepers by course department and topic (e.g. the calculus
series, the general chemistry series, the organic chemistry
series, etc.) as well as across all STEM gatekeepers.

3.3.6 Major Data
Major data consisted of counts of students’ major declara-
tions during their first academic year. In most cases, stu-
dents entered the University with a “pre-major” designation
before declaring their major(s) of interest some time dur-
ing their first or second year. These pre-major designations
varied based on field of interest (e.g. pre-engineering, pre-
nursing, pre-health, etc.). Students’ majors were recorded
on a per-quarter basis by the University (once per quarterly
transcript record) and we tallied the counts of major decla-
rations for each student across the entirety of their first year.
For example, a student who declared a math major in their
first two quarters only to switch to geography in their third
quarter and then add a history double major in their fourth
quarter would have the values 2, 2, 1 in the math major,
geography major, and history major features, respectively.

3.3.7 Pre-Entry Data
Pre-entry data consisted of students’ academic information
prior to attending the University. This included, among
other things, students’ entrance exam scores, high school
GPA, high school coursework, and college in high school
program participation and performance. We did not include
any information on students after their enrollment at the
University in the pre-entry data.

3.4 Machine Learning and Predictions
We randomly divided the students into training and test
sets using a 80-20 split (N in training = 52,848; N in test =
13,212). We used the same test set when evaluating the pre-
dictive performance of each of the models to allow for direct
comparisons to be made. The data was highly skewed with
graduates and re-enrollments comprising 78.5% and 93.1%
of all the data, respectively. Graduates and re-enrollments
comprised 78.0% and 92.9% of the test data, respectively.
Though dealing with class imbalances is of great interest
when examining freshmen attrition [32], we did not use any
balancing techniques as we wanted to work with the data in
its original, unaltered form. We scaled the training data by
subtracting the median of each feature and dividing by the
respective feature’s interquartile range. We subsequently
scaled the test data using the scaling values for each feature
from the training data.

We used five different machine learning models to predict
each student’s graduation and re-enrollment: regularized lo-
gistic regression (LR), K-Nearest Neighbors (KNN), random
forests (RF), support vector machines (SVM), and gradi-
ent boosted trees (XGB). We trained each model across the
entirety of the training data and used the same training

instances to train each of the models. We trained each
model separately to predict graduation and re-enrollment.
We tuned model hyperparameters for each model using 5-
fold cross validation on the training data, after which the
models were re-trained on the entirety of the training data
using the tuned hyperparameters. We report final error met-
rics and performance on the test set, which was consistent
across all models, regardless of whether predicting gradua-
tion or re-enrollment.

After developing predictive models using all features, we cre-
ated regularized logistic regression models using each of the
6 feature subsets highlighted in Section 3.3 in isolation. The
base data (see Table 2) was included in the feature space for
each data subset. The rationale behind using regularized lo-
gistic regression for these models is further discussed in Sec-
tion 4.3. We understand that an alternative approach would
be to test all the models listed above for each of the data sub-
sets to find the best performing model/subset combinations.
That said, we believe our approach was still suitable for com-
paring different data subsets. When modeling using data
subsets, we used the same observations as before to train
each of the models and, as before, we developed a separate
model for predicting graduation and re-enrollment for each
of the data subsets. As such, the training instances were
the same across models but the training features differed
depending on the feature subset used. We tuned the reg-
ularization strength for these regularized logistic regression
models using 5-fold cross validation on the training dataset
and we report results on the test set.

4. RESULTS AND DISCUSSION
4.1 Student Characteristics
We show the number and proportion of graduates and re-
enrollments in Figure 1. In all, 78.5% of students were la-
belled graduates while 93.1% of students were labelled re-
enrollments. These proportions were verified with the Uni-
versity’s office of institutional analysis. Such highly skewed
data towards graduates and re-enrollments can be expected
in a large, tier-1 research university setting where there has
been considerable, long-standing effort to improve the over-
all attrition rate over time. That said, it must also be noted
that at an institution with such a large student population,
even small fractions of the student body represent hundreds
of students on an annual basis. Across the timeline of the
dataset (13 cohorts), 14,196 non-completions and 4,593 non-
re-enrollments represent 1,092 and 351 students on an an-
nual basis, respectively.

We show the cumulative percentage of students who either
graduated or left the University across time in Figure 2. We
used the first year as a cutoff for the data because, histor-
ically, a large number of students decide whether they will
continue with their higher education pursuits during and
immediately after their first year [28]. As such, developing
models that can predict whether students will re-enroll for
a second year and whether they are on a trajectory towards
successful graduation could help administrators and aca-
demic advisors more effectively develop and deliver interven-
tions directed towards students in need of assistance. When
examining the data, 27.5% of all non-completions leave the
university prior to the start of their 2nd year, 51.9% of non-
completions leave the University between their 2nd and 6th



Figure 1: Counts and percentages of classes in the
dataset. Definitions are provided in Section 3.2.

year, and 20.6% continued to be enrolled at the University
after their 6th year. The difference in number between non-
completions who did not return for their 2nd year and non-
re-enrollments can be attributed to non-re-enrollments who
later returned to the University and graduated on time. Less
than 5% of non-completions and less than 15% of non-re-
enrollments left the University after only one term, leading
us to not examine attrition after the first and second terms.
In settings where attrition rates are higher after students’
first and second terms, it may be more relevant to examine
the performance of classifiers after one or two terms.

Figure 2 also shows that a majority of graduates (65.6%)
completed their degrees during their fourth year at the Uni-
versity. The mean and median completion time for all gradu-
ates was 16.6 and 15.0 calendar quarters, respectively, from
first enrollment. This is particularly apparent due to the
near-sigmoidal shape of the cumulative graph for graduates,
with a sharp rise during students’ fourth year. We also see
that there is a relative lack of students who graduated prior
to the start of their third year. This highlights the difficulty
in predicting graduation based on students’ first year - a
student typically does not graduate until several years later,
during which a host of influences can shape an academic
trajectory, be they personal, financial, or academic.

4.2 Predictions Using Different Algorithms
Table 3: Prediction results using all data features.
Baseline values are based on test set.

Graduation Re-Enrollment
Model Accuracy AUROC Accuracy AUROC

Baseline 78.0% 0.500 92.9% 0.500

LR 83.2% 0.811 95.0% 0.882
RF 83.1% 0.806 95.3% 0.887
XGB 83.0% 0.806 95.1% 0.885
KNN 82.5% 0.798 94.8% 0.876
SVM 78.0% 0.780 92.9% 0.862

We show the performance of each of the models using the en-
tirety of the feature space in Table 3. The baseline measure
in the Table refers to the majority class compositions in the
test set. Generally speaking, most of the models had a sim-
ilar comparative performance for each prediction task (i.e.
predicting either graduation or re-enrollment). This hints at

Figure 2: Cumulative graduation and non-
completion curves of students. Years and quarters
are relative to the time of first enrollment. The dot-
ted line indicates the point to which data is limited
for each student. Only students’ first six years are
shown, per the definition of “graduate.”

an effective ceiling with respect to predictive power from the
types of features being used (i.e. ones pulled from registrar
records) and that additional representations of the student
experience (be they academic or social) should be incorpo-
rated. Alternatively, a more complex predictive model (e.g.
deep neural networks) may also fare better in making these
predictions. That said, given the data used, the models are
able to predict the eventual graduation and re-enrollment
of students fairly successfully, as evidenced by the relative
improvements over baseline values for both prediction tasks.

For predicting graduation, logistic regression was the best-
performing model, followed by random forests. When pre-
dicting re-enrollment, random forests performed the best,
followed by gradient boosted trees and logistic regression.
These results are generally in line with our previous work on
similar tasks, where we found that logistic regression tends
to work well compared to other models for predicting grad-
uation and STEM attrition [2]. When examining the worst-
performing models, the SVM model made predictions that
consisted entirely of the majority class when predicting both
graduation and re-enrollment, as seen by the models’ accu-
racy being the same as the baseline values. Such results are
typical of classifiers without much predictive strength on a
dataset consisting of highly disproportionate classes. In this
specific case, it may be remedied by using alternate kernels
for the model, which we did not explore in this work.

We show the ROC curves for the models in Figure 3.
These curves further illustrate the lack of differentiation
with respect to model performance. For the same pre-
diction task, the resulting ROC curves across the mod-
els were nearly identical with little difference in curvature.
The more notable difference was when comparing the ROC
curves for predicting graduation with those for predicting re-
enrollment, as the curves for predicting re-enrollment were
more prominently convex compared to those for predicting
graduation. These curvatures, along with the metrics shown



Figure 3: Receiver operating characteristic curves
when using different machine learning models.

in Table 3, demonstrate that predicting students’ eventual
graduation is a more difficult task than predicting students’
re-enrollment. We expected this as the cutoff for the data
used in the predictions (i.e. students’ first year) was near the
point at which a student is classified as a re-enrollment (after
their second year) but was much earlier than when a student
was classified as a non-completion (after their sixth year).
This helps highlight the degree to which differing operational
definitions of attrition can vastly alter the perceived predic-
tive strength of these classifiers. For other scenarios, alter-
nate definitions of attrition may be more appropriate and
the effectiveness of efforts to build predictive models will be
colored by these definitions and institutional contexts.

We show the confusion matrices for the best models for
predicting graduation and re-enrollment (logistic regression
and random forests, respectively) in Figure 4. These ma-
trices show a lower rate of false negatives for the models
but a higher rate of false positives (i.e. students incor-
rectly classified by the models as having graduated or re-
enrolled). To better understand this higher rate of false
positives, we examined the complete transcript records of
students who were classified accordingly. Across the false
positives, we found numerous instances of non-completions
and non-re-enrollments who had left the University with rel-
atively strong grades in comparison to their graduating and

Figure 4: Confusion matrices when examining the
top performing algorithms for predicting graduation
(LR, left) and re-enrollment (RF, right).

re-enrolling peers. These students also often appeared to be
pursuing very competitive majors and/or appeared to have
rigorous post-graduation plans (e.g. pre-medical and pre-
dental students). Many of these students remained in a pre-
major state prior to their departure, indicating that though
they had relatively strong grades, they likely were not able
to enter into their degree program(s) of choice for various
reasons and had to leave the University to pursue these am-
bitions as a result. Unfortunately, the University does not
have a centralized major application database for admissions
and rejections to specific majors. Having so could shed light
on much of the motivation behind these students’ desire to
leave the University and if it was, in fact, motivated by not
getting into competitive majors. That said, the fact that
many of these students were academically similar to their
graduating and re-enrolling counterparts further illustrates
why there appears to be an effective ceiling with respect to
predictive power using the given data, as seen in Table 3.

From a practical perspective, it should be noted that the
classification thresholds for these models were not tuned
with respect to either sensitivity or specificity. In practice,
when developing institutional systems to identify students
at-risk of leaving, it may be useful to raise the classifica-
tion threshold when predicting whether a student will grad-
uate or re-enroll, thus favoring lower recall at the expense of
higher precision. This would effectively reduce the number
of students who are predicted to graduate but in actuality
do not (i.e. false positives) at the expense of more false neg-
atives, which could be more acceptable when developing an
alert system for students at risk of dropping out.

4.3 Predictions Using Different Data Subsets
After examining the results from predicting graduates and
re-enrollments using all features, we used regularized logis-
tic regression to predict graduation and re-enrollment using
subsets of the data. We used logistic regression after we saw
that it performed very well relative to other models for both
prediction tasks (see Section 4.2) and because it had rela-
tively fast training times due to having fewer hyperparam-
eters to tune. This allowed us to more efficiently train the
12 different models that were needed when examining the
performance of specific data subsets (i.e. separately mod-
eling graduation and re-enrollment while using 6 different



Table 4: Prediction results using specific data sub-
sets. Baseline values are based on test set.

Graduation Re-Enrollment
Subset Accuracy AUROC Accuracy AUROC

Baseline 78.0% 0.500 92.9% 0.500

All 83.2% 0.811 95.0% 0.882
FY-Sum. 83.0% 0.795 94.9% 0.855
Department 82.3% 0.788 94.6% 0.847
Grouped 82.5% 0.781 94.6% 0.845
Major 79.9% 0.661 94.2% 0.768
Demo 78.0% 0.634 92.9% 0.643
Pre-Entry 77.3% 0.630 92.9% 0.616

data subsets in isolation for each).

We show the results when using data subsets in Table 4
alongside the performance of the logistic regression clas-
sifier from Section 4.2. Transcript-based features tended
to perform better than information on students’ prior to
their enrollment at the University. More specifically, de-
mographic data and pre-entry information did relatively
poorly in predicting both graduation and re-enrollment. In-
tuitively, this is not a surprise as the admissions process at
highly-competitive universities tends to be fairly selective
with an emphasis on supporting and sustaining a success-
ful yet diverse student body. Additionally, such institutions
may already have efforts in place to reduce demographic
disparities for student success. Meanwhile, when looking at
transcript-based data subsets, first-year summary data per-
formed the best with performance that was similar to using
the entirety of the data. This is particularly noteworthy as
the first-year summary data contained fewer features than
the other transcript-based data subsets but was centered on
summaries of performance across time rather than aggrega-
tions across course departments/numberings.

These findings are particularly interesting in light of work by
other researchers. For instance, Nagy and Molontay found
that attrition could be accurately predicted using what we
outline as demographic and pre-entry features alone [22].
However, we do not see similar success here. We believe this
could be due to vastly different educational settings and stu-
dent profiles (e.g. here, most students tend to graduate/re-
enroll while Nagy’s student population primarily dropped
out). In earlier work, Dekker et al. found that transcript-
based features tend to have more predictive strength than
pre-entry features, but examined this across rather limited
data subsets [10]. Our results echo this finding. Recently,
Manrique et al. found that attrition could be predicted us-
ing student performance in a few key courses [20]. Here,
we find that aggregates across the first year tend to work
better than more fine-grain representations of course-taking
(e.g. grouping classes by course prefix and numbering). As
discussed in Section 3.3.3, we decided against using individ-
ual course representations in this work.

We show the ROC curves for the regularized logistic regres-
sion models using each of the data subsets as well as the
entire feature space in Figure 5. The fact that demographic
and pre-entry data gave generally worse performance than

Figure 5: Receiver operating characteristic curves
when using different subsets of data.

transcript-based features is very much apparent from the
ROC curves. Data on majors, meanwhile, tended to per-
form worse than other transcript-based features but better
than demographic and pre-entry data. The fact that using
data on majors did not yield particularly strong results likely
relates to the fact that most students in the dataset were in a
pre-major state across their first year and formally declared
their major of interest later in their undergraduate careers.
As noted above, a centralized major application system was
not available, else it could have been leveraged in addition to
data on majors to draw a more clear picture of student aca-
demic interest. The other transcript-based datasets, mean-
while, had very similar curvatures for the ROC curves when
predicting both graduation and re-enrollment.

We show confusion matrices from using the best-performing
data subset in Figure 6. The best-performing data subset
for both prediction tasks was first-year summary data. By
comparing these confusion matrices to those shown in Fig-
ure 4, it can be seen that using just a limited subset of
features tends to classify the data similarly to models built
on the entirety of the data. This is true not only in terms
of how effective the models are in making predictions, but
also with respect to the relatively high rate of false positives
seen across all four matrices.



Figure 6: Confusion matrices when examining the
top performing data subset for predicting gradua-
tion (left) and re-enrollment (right). The top per-
forming data subset was the same for both tasks
(first-year summary data).

5. FUTURE DIRECTIONS
We believe the findings regarding the data subsets have
wide-ranging policy implications, particularly for identifying
students at risk of dropping out in large, public universities.
In such settings, there may be longstanding effort to decrease
demographic disparities with respect to attrition and, as a
result, transcript records may be more viable as features
in predictive models than pre-entry/demographic informa-
tion. Furthermore, these settings may also be resource-
constrained with respect to time available for staff to hand
engineer features. In such settings, knowing which features
would be most predictive of attrition without the need to
hand-engineer features across the entirety of data available
to institutions could save time and effort in building mod-
els. We have had conversations with administrators at the
University for better interpreting our results and improving
the processes for identifying students in need of assistance.

Another direction of interest is better understanding the fea-
tures used in predicting attrition. This includes not only
further examining key individual determinants of attrition,
as we have done in previous work [3, 2], but also finding the
best combination of features across the subsets. We would
like to examine this “minimum viable feature space” in the
context of data available in registrar databases as well as
investigate the degree to which these features relate to es-
tablished theory on student attrition [12].

6. CONCLUSIONS
In this work, we use data from the registrar databases of a
large, public US university to predict both graduation and
re-enrollment using information limited to students’ first cal-
endar year at the university. We do this using a dataset of
students that spans the entirety of the university student
body and is thus much larger than previous studies predict-
ing student attrition (N = 66,060). In so doing, we demon-
strate that both graduation and re-enrollment can be effec-
tively predicted using features generated from data that is
routinely collected at institutions of higher education. Addi-
tionally, we also examine the degree to which specific subsets
of registrar data can be useful in predicting attrition, finding
that transcript-based features tend to outperform features

based on student histories prior to college. This implies that
effective strategies for intervention can be outlined based on
registrar records.

Predicting re-enrollment after students’ first year was a
much more tractable task than predicting graduation. This
can be attributed to the fact that predicting graduation ne-
cessitates predicting academic success years into the future
from the point to which data was limited whereas predicting
re-enrollment is within a much shorter timeframe. Consider-
ing the unpredictable influences that cause students to leave
college prior to graduating (e.g. financial limitations, per-
sonal hardships, etc.), a more reliable prediction task may
be to examine whether a student will return on a term-by-
term basis. This could be particularly useful to develop alert
systems to identify students at risk of dropout. However,
this was not explored in this work due to the relatively few
students who left the University after a single term.

We found that there appears to be an upper limit for pre-
dictive power for our dataset. This demonstrates the limi-
tations when relying solely on registrar data and shows the
need for additional features on the student experience to
improve predictive power. Some potential features of inter-
est include measures of social integration on campus and of
financial aid. Better understanding student aspirations be-
yond simply using declared majors could also be of interest,
especially using alternate representations of student course-
taking behavior, as shown recently by Luo and Pardos [19].

Lastly, we show that features generated from transcript
records, particularly aggregates and summaries of students’
academics, perform better for predictions than demographic
and pre-entry data. Much of this is likely due to the selec-
tivity of the University and its admissions policy. Never-
theless, it demonstrates how useful transcript data can be
for such prediction tasks in contrast to information on stu-
dents prior to college. We demonstrate that using subsets
of data from registrar databases (in this case, aggregates of
students’ first year) can be nearly as effective for predictions
as hand-generating a wide swath of features from different
institutional data sources.
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